Skip to main content
Log in

3D reconstruction modeling of bulk heterojunction organic photovoltaic cells: Effect of the complexity of the boundary on the morphology

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Although the morphology of the active layer in bulk heterojunction organic photovoltaic (BHJ-OPV) cells is critical for determining the quantum efficiency (QE), predicting the real QE for a 3-dimensional (3D) morphology has long been difficult because structural information on the composition complexity of donor (D): acceptor (A) blends with small domain size is limited to 2D observations via various image-processing techniques. To overcome this, we reconstruct the 3D morphology by using an isotropic statistical approach based on 2D energy-filtered transmission electron microscopy (EF-TEM) images. This new reconstruction method is validated to obtain the internal QE by using a dynamic Monte Carlo simulation in the BHJ-OPV system with different additives such as 4 vol% 1-chloronaphthalene (CN) and 4 vol% 1,8-diiodooctane (DIO) (compared to the case of no additive); the resulting trend is compared with the experimental QE. Therefore, our developed method can be used to predict the real charge transport performance in the OPV system accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-G. Ihn et al., J. Mater. Chem. A 2, 2033 (2014).

    Article  Google Scholar 

  2. G. Yu and A. J. Heeger, J. Appl. Phys. 78, 4510 (1995).

    Article  ADS  Google Scholar 

  3. G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science 270, 1789 (1995).

    Article  ADS  Google Scholar 

  4. J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti and A. B. Holmes, Nature 376, 498 (1995).

    Article  ADS  Google Scholar 

  5. S. R. Forrest, MRS Bulletin 30, 28 (2005).

    Article  Google Scholar 

  6. K. M. Coakley and M. D. McGehee, Chem. Mater. 16, 4533 (2004).

    Article  Google Scholar 

  7. X. Yang, J. Loos, S. C. Veenstra, W. J. H. Vehees, M. M. Wienk, J. M. Kroon, M. A. J. Michels and R. A. J. Janssen, Nano Lett. 5, 579 (2005).

    Article  ADS  Google Scholar 

  8. P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster and D. E. Markov, Adv. Mater. 19, 1551 (2007).

    Article  Google Scholar 

  9. X. Guo et al., Nature Photon. 7, 825 (2013).

    Article  ADS  Google Scholar 

  10. P. K. Watkins, A. B. Walker and G. L. B. Verschoor, Nano Lett. 5, 1814 (2005).

    Article  ADS  Google Scholar 

  11. H. K. Kodal and B. Ganapathysubramanian, Modelling Simul. Mater. Sci. Eng. 20, 035015 (2012).

    Article  ADS  Google Scholar 

  12. C.-K. Lee, C.-W. Pao and C.-W Chu, Energy Environ. Sci. 4, 4124 (2011).

    Article  Google Scholar 

  13. D. M. Huang, R. Faller, K. Do and A. J. Mouleé, J. Chem. Theory Comput. 6, 526 (2010).

    Article  Google Scholar 

  14. Y. Liang, D. Feng, Y. Wu, S. T. Tsai, G. Li, C. Ray and L. Yu, J. Am. Chem. Soc. 131, 7792 (2009).

    Article  Google Scholar 

  15. L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li and J. A. How, Angew. Chem. 123, 9871 (2011).

    Article  Google Scholar 

  16. L. Meng, D. Wang, Q. Li, Y. Yi, J.-L. Brédas and Z. Shuai, J. Chem. Phys. 134, 124102 (2011).

    Article  ADS  Google Scholar 

  17. C. Pan, H. Li, B. Akgun, S. K. Satijia, Y. Zhu, D. Xu, J. Ortiz, D. Gersappe and M. H. Rafailovich, Macromolecules 46, 1812 (2013).

    Article  ADS  Google Scholar 

  18. S. J. Lou, J. M. Szarko, T. Xu, L. Yu, T. J. Marks and L. X. Chen, J. Am. Chem. Soc. 133, 20661 (2011).

    Article  Google Scholar 

  19. D. B. Percival and A. T. Walden, Spectral Analysis for Physical Applications (Cambridge University Press, 1993).

    Book  MATH  Google Scholar 

  20. L. Meng, Y. Shang, Q. Li, Y. Li, X. Zhan, Z. Shuai, R. G. E. Kimber and A. B. E. Walker, J. Phys. Chem. B 114, 36 (2010).

    Article  Google Scholar 

  21. W. Ma, C. Yang and A. J. Heeger, Adv. Mater. 19, 1387 (2007).

    Article  Google Scholar 

  22. J. M. Yeomans, Statistical Mechanics of Phase Transitions (Oxford University Press, Inc., New York, 1992).

    Google Scholar 

  23. R. A. Marcus, Rev. Mod. Phys. 65, 599 (1993).

    Article  ADS  Google Scholar 

  24. F. Yang and S. R. Forrest, ACS Nano. 2, 1022 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SeongMin Kim.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SJ., Jeong, D., Kim, S. et al. 3D reconstruction modeling of bulk heterojunction organic photovoltaic cells: Effect of the complexity of the boundary on the morphology. Journal of the Korean Physical Society 68, 474–481 (2016). https://doi.org/10.3938/jkps.68.474

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.474

Keywords

Navigation