Skip to main content
Log in

An adaptive diffusion-weighted whole-body magnetic resonance imaging scheme using the multistation approach

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Whole-body diffusion-weighted imaging (DWI) is a useful tool in oncology, which enables fast screening of disseminated tumors, lymph nodes or abscesses in the body. Multistation magnetic resonance imaging (MRI) or continuously moving table (CMT) MRI can be performed to overcome the limited field of view (FOV) of the magnet bore in whole-body DWI. Although CMT-MRI is regarded as a more advanced form of whole-body MRI, it cannot be widely used because most of the available MR systems are not equipped with the required hardware/software to perform CMT. Thus, optimizing the multistation approach for whole-body DWI, which is more widely available and easier to perform with the existing MR systems, is worthwhile. To improve the quality of DW images acquired with the multistation approach, we used different combinations of the built-in body RF coil and the phased-array surface RF coils for reception of the signals in whole-body DWI in this work. If different coils are selectively used in the extended FOV and appropriate reconstruction algorithms are exploited, the screening ability of whole-body DWI can be improved while minimizing the patient’s discomfort and the artifacts due to physiological motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Takahara, Y. Imai, T. Yamashita, S. Yasuda, S. Nasu and M. van Cauteren, Radiat. Med. 22, 275 (2004).

    Google Scholar 

  2. S. Li, F. Sun, Z. Y. Jin, H. D. Xue and M. L. Li, J. Magn. Reson. 26, 1139 (2007).

    Article  Google Scholar 

  3. D. M. Koh and D. J. Collins, Am. J. Roentgenol. 188, 1622 (2007).

    Article  Google Scholar 

  4. T. C. Kwee, T. Takahara, R. Ochiai, R. A. Nievelstein and P. R. Luijten, Eur. Radiol. 18, 1937 (2008).

    Article  Google Scholar 

  5. U. Ludwig, G. Sommer, M. Zaitsev, N. Ghanem, J. Hennig and H.P. Fautz, Magn. Reson. Med. 55, 423 (2006).

    Article  Google Scholar 

  6. G. Sommer, H.P. Fautz, U. Ludwig and J. Hennig, Magn. Reson. Med. 55, 918 (2006).

    Article  Google Scholar 

  7. P. Bornert and B. Aldefeld, J. Magn. Reson. 28, 1 (2008).

    Article  Google Scholar 

  8. Y. Han, S. Huff, M.Weigel and U. Ludwig, Magn. Reson. Med. 65, 1557 (2011).

    Article  Google Scholar 

  9. H. M. van Ufford, T. C. Kwee, F. J. Beek, M. S. van Leeuwen, T. Takahara, R. Fijnheer, R. A. Nievelstein and J. M. de Klerk, Am. J. Roentgenol. 196, 662 (2011).

    Article  Google Scholar 

  10. D. Delbeke, S. Stroobants, E. de Kerviler, C. Gisselbrecht, M. Meignan and P. S. Conti, Oncologist. 14, 30 (2009).

    Article  Google Scholar 

  11. C. Furth et al., J Pediatr. Hematol. Oncol. 28, 501 (2006).

    Article  Google Scholar 

  12. T. C. Kwee, T. Takahara, T. Niwa, M. K. Ivancevic, G. Herigault, M. van Cauteren and P. R. Luijten, Magn. Reson. Mater. Phy. 22, 319 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeji Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y. An adaptive diffusion-weighted whole-body magnetic resonance imaging scheme using the multistation approach. Journal of the Korean Physical Society 68, 467–473 (2016). https://doi.org/10.3938/jkps.68.467

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.467

Keywords

Navigation