Skip to main content
Log in

Thermoelectric properties of the ceramic oxide Sr1−x La x TiO3

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The effect of lanthanum on the electric and the thermoelectric properties of the ceramic oxide Sr1−x La x TiO3 (where x = 0.0, 0.04, 0.06, 0.08 and 0.12 mole) have been studied. La-doped SrTiO3 was prepared by using the conventional mixed-oxide reaction method. XRD patterns indicated that almost all the La atoms incorporated into the SrTiO3 crystal provided charge carriers. The lattice parameter increases with increasing La doping content. The relative densities of all the samples varied from 89.6% to 94.8%. The electrical conductivity increased with La doping up to 0.08 moles and then decreased as the content of La was increased above 0.08 moles. The thermal conductivity decreased with increasing La content. The largest absolute value of the Seebeck coefficient, 394 μVK−1 at 973 K, was observed at x = 0.04. The Sr0.92La0.08TiO3 sample showed its maximum electrical conductivity at 773 K and its largest ZT value of 0.20 at 973 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis, Nature 489, 414 (2012).

    Article  ADS  Google Scholar 

  2. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, Science 321, 554 (2008).

    Article  ADS  Google Scholar 

  3. M. H. Lee and J.-S. Rhyee, J. Korean Phys. Soc. 64, 695 (2014).

    Article  ADS  Google Scholar 

  4. G.-E. Lee, I.-H. Kim, Y. S. Lim, W.-S. Seo, B.-J. Choi and C.-W. Hwang, J. Korean Phys. Soc. 65, 696 (2014).

    Article  ADS  Google Scholar 

  5. T. M. Tritt and M. A. Subramanian, MRS Bull. 31, 188 (2006).

    Article  Google Scholar 

  6. L. Karvonen, P. Tomes and A. Weidenkaff, Mater. Matters 6, 92 (2011).

    Google Scholar 

  7. L. Bocher, M. H. Aguirre, R. Robert, D. Logvinovich, S. Bakardjieva, J. Hejtmanek and A. Weidenkaff, Acta Mater. 57, 5667 (2009).

    Article  Google Scholar 

  8. M. Ohtaki, Kyushu Uniersity, Global COE Program Novel Carbon Resources Sciences Newsletter (2010).

    Google Scholar 

  9. M. Ito, T. Nagira and S. Hara, J. Alloys Comp. 1217, 408 (2006).

    Google Scholar 

  10. M. Ohtaki and E. Maeda, J. Jpn. Soc. Powd. Powd. Metall. 47, 1159 (2000).

    Article  Google Scholar 

  11. M. Ohtaki, T. Tsubota, K. Eguchi and H. Arai, J. Appl. Phys. 79, 1816 (1996).

    Article  ADS  Google Scholar 

  12. S. Piskunov E. Heifets, R. I. Eglitis and G. Borstel, Computat. Mater. Sci. 29, 165 (2004).

    Article  Google Scholar 

  13. P.-P. Shang, B.-P. Zhang, J.-F. Li and N. Ma, Solid State Sci. 12, 1341 (2010).

    Article  ADS  Google Scholar 

  14. H. Muta, K. Kurosaki and S. Yamanaka, J. Alloys Comp. 350, 292 (2003).

    Article  Google Scholar 

  15. P. L. Bach, V. Leborán, V. Pardo, A. S. Botana, D. Baldomir and F. Rivadulla, Nature Mater. 7, 105 (2008).

    Article  Google Scholar 

  16. P.-P. Shang, B.-P. Zhang, Y. Liu, J.-F. Li and H.-M. Zhu, J. Electron. Mater. 40, 926 (2011).

    Article  ADS  Google Scholar 

  17. N. Wang, H. Chen, H. He, W. Norimatsu, M. Kusunoki and K. Koumoto, Sci. Rep. 3, 3449 (2013).

    ADS  Google Scholar 

  18. H. Muta, K. Kurosaki and S. Yamanaka, Yamanaka, J. Alloys Comp. 368, 22 (2004).

    Article  Google Scholar 

  19. B. R. Sudireddy and K. Agersted, Fuel Cells 14, 961 (2014).

    Article  Google Scholar 

  20. M. Mori, Z. Wang, T. Itoh, S. Yabui, K. Murai and T. Moriga, J. Fuel Cell Sci. Technol. 8, 051014 (2011).

    Article  Google Scholar 

  21. X. Li, H. Zhao, X. Zhou, N. Xu, Z. Xie and N. Chen, Int. J. Hydrogen Energy 35, 7913 (2010).

    Article  Google Scholar 

  22. M. Mori, S. Yabui, Y. Higashi, K. Murai, and T. Moriga, Int. J. Mod. Phys. 6, 1 (2012).

    Google Scholar 

  23. F. M. Pontes, E. J. H. Lee, E. R. Leite, E. Longo and J. A. Varela, J. Mater. Sci. 35, 4783 (2000).

    Article  ADS  Google Scholar 

  24. S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, and K. Koumoto, Appl. Phys. Lett. 87, 092108 (2005).

    Article  ADS  Google Scholar 

  25. A. Verma, A. P. Kajdos, T. A. Cain, S. Stemmer and D. Jena, Phys. Rev. Lett. 112, 216601 (2014).

    Article  ADS  Google Scholar 

  26. A. M. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch Ltd., London, 1957).

    Google Scholar 

  27. X. D. Liu and Y. H. Park, Mater. Trans. 43, 681 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Chul Ur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmud, I., Yoon, MS., Kim, IH. et al. Thermoelectric properties of the ceramic oxide Sr1−x La x TiO3 . Journal of the Korean Physical Society 68, 35–40 (2016). https://doi.org/10.3938/jkps.68.35

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.35

Keywords

Navigation