Abstract
The effect of lanthanum on the electric and the thermoelectric properties of the ceramic oxide Sr1−x La x TiO3 (where x = 0.0, 0.04, 0.06, 0.08 and 0.12 mole) have been studied. La-doped SrTiO3 was prepared by using the conventional mixed-oxide reaction method. XRD patterns indicated that almost all the La atoms incorporated into the SrTiO3 crystal provided charge carriers. The lattice parameter increases with increasing La doping content. The relative densities of all the samples varied from 89.6% to 94.8%. The electrical conductivity increased with La doping up to 0.08 moles and then decreased as the content of La was increased above 0.08 moles. The thermal conductivity decreased with increasing La content. The largest absolute value of the Seebeck coefficient, 394 μVK−1 at 973 K, was observed at x = 0.04. The Sr0.92La0.08TiO3 sample showed its maximum electrical conductivity at 773 K and its largest ZT value of 0.20 at 973 K.
Similar content being viewed by others
References
K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis, Nature 489, 414 (2012).
J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, Science 321, 554 (2008).
M. H. Lee and J.-S. Rhyee, J. Korean Phys. Soc. 64, 695 (2014).
G.-E. Lee, I.-H. Kim, Y. S. Lim, W.-S. Seo, B.-J. Choi and C.-W. Hwang, J. Korean Phys. Soc. 65, 696 (2014).
T. M. Tritt and M. A. Subramanian, MRS Bull. 31, 188 (2006).
L. Karvonen, P. Tomes and A. Weidenkaff, Mater. Matters 6, 92 (2011).
L. Bocher, M. H. Aguirre, R. Robert, D. Logvinovich, S. Bakardjieva, J. Hejtmanek and A. Weidenkaff, Acta Mater. 57, 5667 (2009).
M. Ohtaki, Kyushu Uniersity, Global COE Program Novel Carbon Resources Sciences Newsletter (2010).
M. Ito, T. Nagira and S. Hara, J. Alloys Comp. 1217, 408 (2006).
M. Ohtaki and E. Maeda, J. Jpn. Soc. Powd. Powd. Metall. 47, 1159 (2000).
M. Ohtaki, T. Tsubota, K. Eguchi and H. Arai, J. Appl. Phys. 79, 1816 (1996).
S. Piskunov E. Heifets, R. I. Eglitis and G. Borstel, Computat. Mater. Sci. 29, 165 (2004).
P.-P. Shang, B.-P. Zhang, J.-F. Li and N. Ma, Solid State Sci. 12, 1341 (2010).
H. Muta, K. Kurosaki and S. Yamanaka, J. Alloys Comp. 350, 292 (2003).
P. L. Bach, V. Leborán, V. Pardo, A. S. Botana, D. Baldomir and F. Rivadulla, Nature Mater. 7, 105 (2008).
P.-P. Shang, B.-P. Zhang, Y. Liu, J.-F. Li and H.-M. Zhu, J. Electron. Mater. 40, 926 (2011).
N. Wang, H. Chen, H. He, W. Norimatsu, M. Kusunoki and K. Koumoto, Sci. Rep. 3, 3449 (2013).
H. Muta, K. Kurosaki and S. Yamanaka, Yamanaka, J. Alloys Comp. 368, 22 (2004).
B. R. Sudireddy and K. Agersted, Fuel Cells 14, 961 (2014).
M. Mori, Z. Wang, T. Itoh, S. Yabui, K. Murai and T. Moriga, J. Fuel Cell Sci. Technol. 8, 051014 (2011).
X. Li, H. Zhao, X. Zhou, N. Xu, Z. Xie and N. Chen, Int. J. Hydrogen Energy 35, 7913 (2010).
M. Mori, S. Yabui, Y. Higashi, K. Murai, and T. Moriga, Int. J. Mod. Phys. 6, 1 (2012).
F. M. Pontes, E. J. H. Lee, E. R. Leite, E. Longo and J. A. Varela, J. Mater. Sci. 35, 4783 (2000).
S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, and K. Koumoto, Appl. Phys. Lett. 87, 092108 (2005).
A. Verma, A. P. Kajdos, T. A. Cain, S. Stemmer and D. Jena, Phys. Rev. Lett. 112, 216601 (2014).
A. M. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch Ltd., London, 1957).
X. D. Liu and Y. H. Park, Mater. Trans. 43, 681 (2002).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mahmud, I., Yoon, MS., Kim, IH. et al. Thermoelectric properties of the ceramic oxide Sr1−x La x TiO3 . Journal of the Korean Physical Society 68, 35–40 (2016). https://doi.org/10.3938/jkps.68.35
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.3938/jkps.68.35