Skip to main content
Log in

Thermally stable AuBe-based ohmic contacts to p-type GaP for AlGaInP-based light-emitting diode by using a tungsten barrier layer

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigated how a tungsten diffusion barrier layer affected the electrical properties of AuBe/Au contacts to a p-GaP window layer (na = 5 × 1019 cm−3) for an AlGaInP-based light emitting diode. All of the as-deposited samples were ohmic. After annealing at 500 °C, the AuBe/Au contacts were electrically degraded with a specific contact resistivity of 1.0 × 10−4 Ωcm2. However, the electrical properties of the W-based contacts were improved, having a contact resistivity of 5.0 × 10−6 Ωcm2. The X-ray photoemission spectroscopy (XPS) results showed that the Ga 2p core level for the annealed AuBe/Au contacts shifted to the high binding-energy side. On the other hand, that for the AuBe/W/Au contacts shifted toward the lower binding-energy side. For the AuBe/Au contacts, both Be and P atoms were shown to be outdiffused into the metal contact after annealing. However, for the AuBe/W/Au contacts, the outdiffusion of Be atoms was prevented by the W barrier layer, and the Be atoms were indiffused into GaP. Based on the X-ray photoemission spectroscopy (XPS), Auger electron spectroscopy (AES), and electrical results, the annealing-induced electrical degradation and improvement are described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sugawara, M. Ishikawa and G. Hatakoshi, Appl. Phys. Lett. 58, 1010 (1991).

    Article  ADS  Google Scholar 

  2. C. S. Chang, Y. K. Su, S. J. Chang, P. T. Chang, Y. R. Wu, K. H. Huang and T. P. Chen, IEEE J. Quantum Electron. 34, 77 (1998).

    Article  ADS  Google Scholar 

  3. S. C. Hsu, D. S. Wuu, C. Y. Lee, J. Y. Su and R. H. Horng, IEEE Photonics Technol. Lett. 19, 492 (2007).

    Article  ADS  Google Scholar 

  4. H. M. Lo, S. C. Shei, X. F. Zeng, S. J. Chang and H. Y. Lin, IEEE J. Quantum Electron. 47, 803 (2011).

    Article  ADS  Google Scholar 

  5. C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford and V. M. Robbins, Appl. Phys. Lett. 57, 2937 (1990).

    Article  ADS  Google Scholar 

  6. F. A. Kish et al., Appl. Phys. Lett. 64, 2839 (1994).

    Article  ADS  Google Scholar 

  7. H. M. Lo, S. C. Shei, X. F. Zeng, S. J. Chang and H. Y. Lin, J. Electrochem. Soc. 158, H506 (2011).

    Article  Google Scholar 

  8. B. J. Li, E. K. Liu and F. J. Zhang, Solid-State Electron. 41, 917 (1997).

    Article  Google Scholar 

  9. T. F. Lei and G. K. Jeng, Solid-State Electron. 31, 109 (1988).

    Article  ADS  Google Scholar 

  10. C. F. Lin, D. B. Ingerly and Y. A. Chang, Appl. Phys. Lett. 69, 3543 (1996).

    Article  ADS  Google Scholar 

  11. T. V. Blank, Y. A. Goldberg, O. V. Konstantinov, V. G. Nikitin and E. A. Posse, Tech. Phys. Lett. 30, 806 (2004).

    Article  ADS  Google Scholar 

  12. J. Pfeifer, Solid-State Electron. 19, 927 (1976).

    Article  ADS  Google Scholar 

  13. W. C. Cheng and H. L. Lin, Jpn. J. Appl. Phys. (Part 1) 45, 8556 (2006).

    Article  ADS  Google Scholar 

  14. B. Pecz, R. Veresegyhazy, G. Radnoczi, A. Barna, I. Mojzes, O. Geszti and G. Vincze, J. Appl. Phys. 70, 332 (1991).

    Article  ADS  Google Scholar 

  15. I. J. Fritz, L. R. Dawson and G. C. Osbourn, J. Electron. Mater. 14, 73 (1985).

    Article  ADS  Google Scholar 

  16. Q. Z. Xu and L. W. Yang, IEEE Trans. Electron Devices 58, 2582 (2011).

    Article  ADS  Google Scholar 

  17. T. Ogawa, H. Morota and S. Adachi, J. Phys. D: Appl. Phys. 40, 4603 (2007).

    Article  ADS  Google Scholar 

  18. J. X. Sun, D. J. Seo, W. L. O’Brien, F. J. Himpsel, A. B. Ellis and T. F. Kuech, J. Appl. Phys. 85, 969 (1999).

    Article  ADS  Google Scholar 

  19. T. J. Yu, T. Tanno, K. Suto and J. Nishizawa, J. Electron. Mater. 31, 591 (2002).

    Article  ADS  Google Scholar 

  20. J. A. Vanvechten, J. Electrochem. Soc. 122, 419 (1975).

    Article  Google Scholar 

  21. Y. K. Krutogolov, Semiconductors 44, 752 (2010).

    Article  ADS  Google Scholar 

  22. H. Kim, J. H. Ryou, R. D. Dupuis, S. N. Lee, Y. Park, J. W. Jeon and T. Y. Seong, Appl. Phys. Lett. 93, 192106 (2008).

    Article  ADS  Google Scholar 

  23. V. G. Weizer and N. S. Fatemi, J. Appl. Phys. 69, 8253 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Yeon Seong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DH., Kang, D., Park, JS. et al. Thermally stable AuBe-based ohmic contacts to p-type GaP for AlGaInP-based light-emitting diode by using a tungsten barrier layer. Journal of the Korean Physical Society 68, 306–310 (2016). https://doi.org/10.3938/jkps.68.306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.306

Keywords

Navigation