Skip to main content
Log in

Schottky anomaly in a repulsive lattice polymer

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We examine the specific heat of a self-avoiding polymer on a square lattice with repulsive interactions, which exhibits the Schottky anomaly, a peak in the low-temperature region without a divergence in the thermodynamic limit. The low-temperature tail of the specific heat can be explained by the bending energy imposed due to repulsive next-nearest-neighbor interactions, which play the role of local interactions along the chain. For comparison, the specific heat of a polymer without nonlocal self-exclusion is also considered, wherein only the bending energy is present, which is analytically solvable. The specific heat of the self-avoiding repulsive next-nearest-neighbor polymer is also shown to be robust with respect to the addition of repulsive nearest-neighbor interactions, which act only as nonlocal perturbations causing a slight change in the specific heat in the high-temperature region. We also discuss the relevance of the lattice effect in the context of real polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Tari, The Specific Heat of Matter at Low Temperatures (Imperial College Press, London, 2003).

    Book  Google Scholar 

  2. E. W. Fischer, A. Bakai, A. Patkowski, W. Steffen and L. Reinhardt, J. Non-Cryst. Solids 307–310, 584 (2002).

    Article  Google Scholar 

  3. I. Mirebeau et al., Phys. Rev. Lett. 94, 246402 (2005).

    Article  ADS  Google Scholar 

  4. M. S. Torikachvili, S. Jia, E. D. Mun, S. T. Hannahs, R. C. Black, W. K. Neils, D. Martien, S. L. Bud’ko and P. C. Caneld, Proc. Natl. Acad. Sci. U.S.A. 104, 9960 (2007).

    Article  ADS  Google Scholar 

  5. S. Tanase, M. Evangelisti, L. J. de Jongh, J. M. M. Smits and R. de Gelder, Inorg. Chim. Acta. 361, 3548 (2008).

    Article  Google Scholar 

  6. V. H. Tran and B. Swiatek-Tran, Dalton Trans. 36, 4860 (2008).

    Article  Google Scholar 

  7. G. A. Timco et al., Nat. Nanotechnol. 4, 173 (2009).

    Article  ADS  Google Scholar 

  8. T. Mori, T. Takimoto, A. Leithe-Jasper, R. Cardoso-Gil, W. Schnelle, G. Auffermann, H. Rosner and Y. Grin, Phys. Rev. B 79, 104418 (2009).

    Article  ADS  Google Scholar 

  9. C. He, H. Zheng, J. F. Mitchell, M. L. Foo, R. J. Cava and C. Leighton, Appl. Phys. Lett. 94, 102514 (2009).

    Article  ADS  Google Scholar 

  10. F. Troiani, V. Bellini, A. Candini, G. Lorusso and M. Affronte, Nanotechnology 21, 274009 (2010).

    Article  ADS  Google Scholar 

  11. A. Hackl and M. Vojta, Phys. Rev. Lett. 106, 137002 (2011).

    Article  ADS  Google Scholar 

  12. S. Tanase, M. Evangelisti and L. J. de Jongh, Dalton Trans. 40, 8407 (2011).

    Article  Google Scholar 

  13. L. Xie, T. S. Su and X. G. Li, Physica C 480, 14 (2012).

    Article  ADS  Google Scholar 

  14. W. D. Wang et al., J. Low Temp. Phys. 171, 127 (2013).

    Article  ADS  Google Scholar 

  15. A. K. Pathak, D. Paudyal, Y. Mudryk, K. A. Gschneidner and V. K. Pecharsky, Phys. Rev. Lett. 110, 186405 (2013).

    Article  ADS  Google Scholar 

  16. A. Capolupo, S. M. Giampaolo and F. Illuminati, Phys. Rev. E 88, 042132 (2013).

    Article  ADS  Google Scholar 

  17. P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1967).

    Google Scholar 

  18. P. G. de Gennes, J. Physique Lett. 36, 55 (1975).

    Article  Google Scholar 

  19. J. H. Lee, S.-Y. Kim and J. Lee, J. Chem. Phys. 135, 204102 (2011).

    Article  ADS  Google Scholar 

  20. J. H. Lee, S.-Y. Kim and J. Lee, Phys. Rev. E 87, 052601 (2013).

    Article  ADS  Google Scholar 

  21. C.-N. Chen, Y.-H. Hsieh and C.-K. Hu, Europhys. Lett. 104, 20005 (2013).

    Article  ADS  Google Scholar 

  22. T. Antal, M. Droz and Z. Rácz, J. Phys. A 37, 1465 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  23. J. H. Lee, S.-Y. Kim and J. Lee, Comput. Phys. Commun. 182, 1027 (2011).

    Article  ADS  Google Scholar 

  24. J. Lee, J. Korean Phys. Soc. 65, 676 (2014).

    Article  ADS  Google Scholar 

  25. A. J. Guttmann and A. R. Conway, Ann. Comb. 5, 319 (2001).

    Article  MathSciNet  Google Scholar 

  26. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University Press, Cambridge, 1992), p. 111.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julian Lee or Seung-Yeon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Lee, J. & Kim, SY. Schottky anomaly in a repulsive lattice polymer. Journal of the Korean Physical Society 68, 288–295 (2016). https://doi.org/10.3938/jkps.68.288

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.288

Keywords

Navigation