Skip to main content
Log in

Effects of lithium (Li) on lithium-cuprous-oxide (Li-Cu2O) composite films grown by using electrochemical deposition for a PEC photoelectrode

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, Li-Cu2O composite films were grown on fluorine-doped tin-oxide (FTO) substrates by using the electrochemical deposition method. Various amounts of lithium (Li) were added to grow the Li-Cu2O composite films. We analyzed the morphology, structure, photocurrent density and photo-stability of the Li-Cu2O composite films by using various measurements such as field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and potentiostat/galvanostat measurements, respectively. As a result, the highest XRD Cu2O (111)/ LiO (011) peak intensity ratio was obtained for the 10-wt% sample, which also had the highest photocurrent density value of -5.00 mA/cm2. The highest photocurrent density value for the 10-wt% sample was approximately 5 times greater than that of the 0-wt% sample. As shown by this result, we found that adding Li could improve the photocurrent values of Li-Cu2O composite films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Chiang, J. Epstein, A. Brown, J. N. Munday, J. N. Culver and S. Ehrman, Nano Lett. 12, 6005 (2012).

    Article  ADS  Google Scholar 

  2. K. Maeda, J. Photochem, Photobiol. C-Photochem. Rev. 12, 237 (2011).

    Article  Google Scholar 

  3. E. S. Babu, S.-K. Hong, M. Jeong, J. Y. Lee, J.-H. Song and H. K. Cho, J. Korean Phys. Soc. 66, 832 (2015).

    Article  ADS  Google Scholar 

  4. E. Thimsen, F. Le Formal, M. Grätzel and S. C. Warren, Nano Lett. 11, 35 (2010).

    Article  ADS  Google Scholar 

  5. I. S. Cho, Z. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo and X. Zheng, Nano Lett. 11, 4978 (2011).

    Article  ADS  Google Scholar 

  6. J. Su, X. Feng, J. D. Sloppy, L. Guo and C. A. Grimes, Nano Lett. 11, 203 (2010).

    Article  ADS  Google Scholar 

  7. S. Liu, J. Tian, L. Wang, Y. Luo and X. Sun, Catal. Sci. Tech. 2, 339 (2012).

    Article  Google Scholar 

  8. M. A. Mahmoud, W. Qian, M. A. El-Sayed, Nano Lett. 11, 3285 (2011).

    Article  Google Scholar 

  9. Y. Liu, Y. Liu, R. Mu, H. Yang, C. Shao, J. Zhang, Y. Lu, D. Shen and X. Fan, Semicond. Sci. Tech. 20, 44 (2005).

    Article  ADS  Google Scholar 

  10. P. de Jongh, D. Vanmaekelbergh and J. Kelly, Chem. Comm. 1069 (1999).

    Google Scholar 

  11. A. Paracchino, V. Laporte, K. Sivula, M. Grätzel and E. Thimsen, Nature Mater. 10, 456 (2011).

    Article  ADS  Google Scholar 

  12. J. Katayama, K. Ito, M. Matsuoka, J. Tamaki, J. Appl. Electrochem. 34, 687 (2004).

    Article  Google Scholar 

  13. Y. Liu, H. Zhou, J. Li, H. Chen, D. Li, B. Zhou and W. Cai, Nano-Micro Lett. 2, 277 (2010).

    Article  Google Scholar 

  14. S. Ishizuka et al., physica status solidi (c) 1, 1067 (2004).

    Article  ADS  Google Scholar 

  15. A. Musa, T. Akomolafe and M. Carter, Solar Energy Mater. Solar Cells 51, 305 (1998).

    Article  Google Scholar 

  16. M. Ivill, M. Overberg, C. Abernathy, D. Norton, A. Hebard, N. Theodoropoulou and J. Budai, Solid-State Electron. 47, 2215 (2003).

    Article  ADS  Google Scholar 

  17. T. Maruyama, Solar Energy Mater. Solar Cells. 56, 85 (1998).

    Article  Google Scholar 

  18. H. Yu, J. Yu, S. Liu and S. Mann, Chem. Mater. 19, 4327 (2007).

    Article  Google Scholar 

  19. A. Thiangkaew, K. Keothongkham, W. Maiaugree, W. Jarernboon, T. Kamwanna, S. Pimanpang and V. Amornkitbamrung, J. Korean Phys. Soc. 64, 1356 (2014).

    Article  ADS  Google Scholar 

  20. T. G. Kim, J. T. Jang and H. Ryu, J. Korean Phys. Soc. 63, 78 (2013).

    Article  ADS  Google Scholar 

  21. T. G. Kim, J. Jang, H. Ryu and W. Lee, J. Alloys Compd. 579, 558 (2013).

    Article  Google Scholar 

  22. B. Heng, T. Xiao, W. Tao, X. Hu, X. Chen, B. Wang, D. Sun and Y. Tang, Cryst. Growth Design 12, 3998 (2012).

    Article  Google Scholar 

  23. D. P. Joseph, T. P. David and S. P. Raja, C. Venkateswaran, Mater. Charact. 59, 1137 (2008).

    Article  Google Scholar 

  24. S. Wu, Z. Yin, Q. He, X. Huang, X. Zhou and H. Zhang, J. Phys. Chem. C, 114, 11816 (2010).

    Article  Google Scholar 

  25. S. Fujihara, C. Sasaki, T. Kimura, J. EUR CERAM 21, 2109 (2001).

    Article  Google Scholar 

  26. R. Y. Wang, D. W. Kirk and G. X. Zhang, J. Electrochem. Soc. 153, C357 (2006).

    Article  Google Scholar 

  27. Y. Hsu and H. Lin, IJAPM. 3, 43 (2013).

    Article  Google Scholar 

  28. T. G. Kim, H. B. Oh and H. Ryu, J. Alloys Compd. 612, 74 (2014).

    Article  Google Scholar 

  29. C. Chiang, Y. Shin and S. Ehrman, J. Electrochem. Soc. 159, B227 (2011).

    Article  Google Scholar 

  30. J. Nian, C. Hu and H. Teng, Int. J. Hydrog. Energy. 33, 2897 (2008).

    Article  Google Scholar 

  31. A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S. D. Tilley and M. Grätzel, Energy Environ. Sci. 5, 8673 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyukhyun Ryu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T.G., Ryu, H. & Lee, WJ. Effects of lithium (Li) on lithium-cuprous-oxide (Li-Cu2O) composite films grown by using electrochemical deposition for a PEC photoelectrode. Journal of the Korean Physical Society 68, 268–273 (2016). https://doi.org/10.3938/jkps.68.268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.268

Keywords

Navigation