Abstract
Relaxor ferroelectricity is one of the most widely investigated but the least understood material classes in the condensed matter physics. This is largely due to the lack of experimental tools that decisively confirm the existing theoretical models. In spite of the diversity in the models, they share the core idea that the observed features in relaxors are closely related to localized chemical heterogeneity. Given this, this review attempts to overview the existing models of importance chronologically, from the diffuse phase transition model to the random-field model and to show how the core idea has been reflected in them to better shape our insight into the nature of relaxor-related phenomena. Then, the discussion will be directed to how the models of a common consensus, developed with the so-called canonical relaxors such as Pb(Mg1/3Nb2/3)O3 (PMN) and (Pb, La)(Zr, Ti)O3 (PLZT), are compatible with phenomenological explanations for the recently identified relaxors such as (Bi1/2Na1/2)TiO3 (BNT)-based lead-free ferroelectrics. This review will be finalized with a discussion on the theoretical aspects of recently introduced 0−3 and 2−2 ferroelectric/relaxor composites as a practical tool for strain engineering.
Similar content being viewed by others
References
G. H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).
G. A. Samara, Solid State Phys. 56, 239 (2001).
R. Blinc, Ferroelectrics 267, 3 (2002).
M. Dawber, K. M. Rabe, and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005).
J. F. Scott, Science 315, 954 (2007).
N. Setter et al., J. Appl. Phys. 100, 051606 (2006).
F. Jona and G. Shirane, Ferroelectric Crystals (The McMillan Company, New York, 1962).
M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).
L. E. Cross, Ferroelectrics 76, 241 (1987).
G. A. Smolenskii and A. I. Agranovskaya, Sov. Phys. Tech. Phys. 3, 1380 (1958).
V. V. Kirillov and V. A. Isupov, Ferroelectrics 5, 3 (1973).
D. Viehland, S. J. Jang, L. E. Cross and M. Wuttig, J. Appl. Phys. 68, 2916 (1990).
V. Westphal, W. Kleemann and M. Glinchuk, Phys. Rev. Lett. 68, 847 (1992).
M. A. Akbas and P. K. Davies, J. Am. Ceram. Soc. 80, 2933 (1997).
Z-Y. Cheng, R. S. Katiyar, X. Yao and A. Guo, Phys. Rev. B 55, 8165 (1997).
R. Pirc and R. Blinc, Phys. Rev. B 60, 13470 (1999).
G. A. Samara, J. Phys. Condens. Matter 15, R367 (2003).
W. Kleemann, J. Mater. Sci. 41, 129 (2006).
R. Blinc, V. V. Laguta, B. Zalar and J. Banys, J. Mater. Sci. 41, 27 (2006).
R. A. Cowley, S. N. Gvasaliya, S. G. Lushnikov, B. Roessli and G. M. Rotaru, Adv. Phys. 60, 229 (2011).
A. A. Bokov and Z-G. Ye, J. Adv. Dielectr. 2, 1241010 (2012).
W. Kleemann, J. Adv. Dielectr. 2, 1241001 (2012).
J. Hlinka, J. Adv. Dielectr. 2, 1241006 (2012).
J. Galvagni, Opt. Eng. 29, 1389 (1990).
D. Damjanovic and R. E. Newnham, J. Intel. Mat. Syst. Str. 3, 190 (1992).
K. Uchino, Acta Mater. 46, 3745 (1998).
S. Fujiwara, K. Furukawa, N. Kikuchi, O. Iizawa and H. Tanaka, High dielectric constant type ceramic composition (1981), US Patent 4,265,668, URL http://www.google.com.gh/patents/US4265668.
Y. Takeuchi and K. Kimura, Piezoelectric/electrostrictive actuator having ceramic substrate having recess defining thin-walled portion (1993), US Patent 5,210,455, http://www.google.com.gh/patents/US5210455.
A. Sutherland, K. Bridger, E. Fiore, J. Christodoulou, A. Bailey and A. Gelb, High energy density lead magnesium niobate-based dielectric ceramic and process for the preparation thereof (1994), US Patent 5,337,209, URL http://www.google.com.gh/patents/US5337209.
T. Gururaja, J. Fielding, T. Shrout and S. Jang, Electrostrictive ultrasonic probe having expanded operating temperature range (1994), US Patent 5,345,139, http://www.google.com.gh/patents/US5345139.
J. Mutton, H. Le, Q. Zhang, R. Adams, L. Cross, T. Shrout and Q. Jiang, Ferroelectric relaxor actuator for an ink-jet print head (1998), US Patent 5,790,156, URL http://www.google.com.gh/patents/US5790156.
W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H-J. Kleebe, A. J. Bell and J. Rödel, J. Appl. Phys. 110, 074106 (2011).
W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang and J. Rödel, J. Electroceram. 29, 71 (2012).
C-H. Hong, H-P. Kim, B-Y. Choi, H-S. Han, J. S. Son, C.W. Ahn and W. Jo, J. Materiomics 2, 1 (2016).
S-T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg and J. Rödel, Appl. Phys. Lett. 91, 112906 (2007).
S-T. Zhang, A. B. Kounga, E. Aulbach, T. Granzow, W. Jo, H-J. Kleebe and J. Rödel, J. Appl. Phys. 103, 034107 (2008).
S-T. Zhang, A. B. Kounga, E. Aulbach, W. Jo, T. Granzow, H. Ehrenberg and J. Rödel, J. Appl. Phys. 103, 034108 (2008).
G. A. Smolenskii and A. I. Agranovskaya, Sov. Phys. Tech. Phys. 3, 1380 (1958).
G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya and S. N. Popov, Sov. Phys. Solid State 2, 2584 (1961).
N. Setter and L. E. Cross, J. Appl. Phys. 51, 4356 (1980).
C. G. F. Stenger, F. L. Scholten and A. J. Burggraaf, Solid State Commun. 32, 989 (1979).
N. Setter and L. E. Cross, J. Mater. Sci. 15, 2478 (1980).
G. Burns and B. A. Scott, Solid State Commun. 13, 423 (1973).
G. A. Smolenskii, Jpn. J. Phys. Soc. S 28, 26 (1970).
A. K. Tagantsev, Phys. Rev. Lett. 72, 1100 (1994).
A. E. Glazounov and A. K. Tagantsev, Appl. Phys. Lett. 73, 856 (1998).
R. Clarke and J. C. Burfoot, Ferroelectrics 8, 505 (1974).
J. Kuwata, K. Uchino and S. Nomura, Ferroelectrics 22, 863 (1979).
G. Burns and F. Dacol, Phys. Rev. B 28, 2527 (1983).
A. Bosak, D. Chernyshov, S. Vakhrushev and M. Krisch, Acta crystallogr. A 68, 117 (2012).
H. Vogel, Phys. Z 22, 645 (1921).
G. S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925).
G. Tammann, Z. Anorg. Allg. Chem. 156, 245 (1926).
D. Viehland, M. Wuttig and L. E. Cross, Ferroelectrics 120, 71 (1991).
Z. Kutnjak, C. Filipic, A. Levstik and R. Pirc, Phys. Rev. Lett. 70, 4015 (1993).
J. Hemberger, H. Ries, A. Loidl and R. Böhmer, Phys. Rev. Lett. 76, 4015 (1996).
S. N. Dorogovtsev and N. K. Yushin, Ferroelectrics 112, 27 (1990).
A. Levstik, Z. Kutnjak, C. Filipic and R. Pirc, Phys. Rev. B 57, 11204 (1998).
Z. Kutnjak, C. Filipic, R. Pirc, A. Levstik, R. Farhi and M. El Marssi, Phys. Rev. B 59, 294 (1999).
R. Pirc and R. Blinc, Phys. Rev. B 76, 020101 (2007).
M. Tachibana and E. Takayama-Muromachi, Phys. Rev. B 79, 100104 (2009).
N. Novak, R. Pirc, M. Wencka and Z. Kutnjak, Phys. Rev. Lett. 109, 037601 (2012).
S. B. Vakhrushev, B. E. Kryatkovsky, A. A. Naberenzhnov, N. M. Okuneva and B. P. Toperverg, Ferroelectrics 90, 173 (1989).
H. Qian and L. A. Bursill, Int. J. Mond. Phys. B 10, 2007 (1996).
A. Naberezhnov, S. Vakhrushev, B. Dorner, D. Strauch and H. Moudden, Eur. Phys. J. B 11, 13 (1999).
K. Hirota, Z-G. Ye, S. Wakimoto, P. M. Gehring and G. Shirane, Phys. Rev. B 65, 104105 (2002).
G. Xu, G. Shirane, J. R. D. Copley and P. M. Gehring, Phys. Rev. B 69, 064112 (2004).
W. Jo, J. Daniels, D. Damjanovic, W. Kleemann and J. Rödel, Appl. Phys. Lett. 102, 192903 (2013).
H. Arndt, F. Sauerbier, G. Schmidt and L. A. Shebanov, Ferroelectrics 79, 145 (1988).
R. Sommer, N. K. Yushin and J. J. van der Klink, Phys. Rev. B 48, 13230 (1993).
E. V. Colla, E. Y. Koroleva, N. M. Okuneva and S. B. Vakhrushev, Phys. Rev. Lett. 74, 1681 (1995).
O. Bidault, M. Licheron, E. Husson and A. Morell, J. Phys.: Condens. Matter 8, 8017 (1996).
V. Bobnar, Z. Kutnjak, R. Pirc and A. Levstik, Phys. Rev. B 60, 6420 (1999).
Y. Imry and S-K. Ma, Phys. Rev. Lett. 35, 1399 (1975).
B. P. Burton, E. Cockayne and U. V. Waghmare, Phys. Rev. B 72, 064113 (2005).
B. J. Rodriguez, S. Jesse, A. A. Bokov, Z-G. Ye and S. V. Kalinin, Appl. Phys. Lett. 95, 092904 (2009).
A. R. Bishop, A. Bussmann-Holder, S. Kamba and M. Maglione, Phys. Rev. B 81, 064106 (2010).
V. V. Shvartsman, J. Dec, S. Miga, T. Lukasiewicz and W. Kleemann, Ferroelectrics 376, 1 (2008).
V. V. Shvartsman, W. Kleemann, T. Lukasiewicz and J. Dec, Phys. Rev. B 77, 054105 (2008).
D. S. Fisher, G. M. Grinstein and A. Khurana, Phys. Today 41, 56 (1988).
V. V. Shvartsman, J. Dec, Z. K. Xu, J. Banys, P. Keburis and W. Kleemann, Phase Trans. 81, 11 (2008).
V. V. Shvartsman, J. Zhai and W. Kleemann, Ferroelectrics 379, 77 (2009).
C. Laulhé, F. Hippert, J. Kreisel, A. Pasturel, A. Simon, J-L. Hazemann, R. Bellissent and G. J. Cuello, Phase Trans. 84, 438 (2011).
P. K. Davies, Curr. Opin. Solid State Mater. Sci. 4, 467 (1999).
Z-Y. Cheng, R. S. Katiyar, X. Yao and A. Guo, Phys. Rev. B 55, 8165 (1997).
D. Lin, Z. Li, S. Zhang, Z. Xu and X. Yao, Solid State Commun. 149, 1646 (2009).
A. A. Bokov and Z-G. Ye, J. Mater. Sci. 41, 31 (2006).
S-T. Zhang, A. B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel and D. Damjanovic, Adv. Mater. 21, 4716 (2009).
J. Rödel, W. Jo, K. T. P. Seifert, E-M. Anton, T. Granzow and D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009).
V. V. Shvartsman and D. C. Lupascu, J. Am. Ceram. Soc. 95, 1 (2012).
V. Dorcet, G. Trolliard and P. Boullay, Chem. Mater. 20, 5061 (2008).
F. Cordero, F. Craciun, F. Trequattrini, E. Mercadelli and C. Galassi, Phys. Rev. B 81, 144124 (2010).
W. Jo and J. Rödel, Appl. Phys. Lett. 99, 042901 (2011).
J. E. Daniels, W. Jo, J. Rödel and J. L. Jones, Appl. Phys. Lett. 95, 032904 (2009).
J. E. Daniels, W. Jo, J. Rödel, V. Honkimäki and J. L. Jones, Acta Mater. 58, 2103 (2010).
W. Ge, H. Cao, J. Li, D. Viehland, Q. Zhang and H. Luo, Appl. Phys. Lett. 95, 162903 (2009).
G. Picht, J. Töpfer and E. Hennig, J. Eur. Ceram. Soc. 30, 3445 (2010).
J. Kling, X. Tan, W. Jo, H-J. Kleebe, H. Fuess and J. Rödel, J. Am. Ceram. Soc. 93, 2452 (2010).
M. Hinterstein, M. Knapp, M. Hölzel, W. Jo, A. Cervellino, H. Ehrenberg and H. Fuess, J. Appl. Crystallogr. 43, 1314 (2010).
H. Simons, J. Daniels, W. Jo, R. Dittmer, A. Studer, M. Avdeev, J. Rödel and M. Hoffman, Appl. Phys. Lett. 98, 082901 (2011).
H. Wanga, H. Xu, H. Luo, Z. Yin, A. A. Bokov and Z-G. Ye, Appl. Phys. Lett. 87, 012904 (2005).
E. Sapper, S. Schaab, W. Jo, T. Granzow and J. Rödel, J. Appl. Phys. 111, 014105 (2012).
K. N. Pham, A. Hussain, C. W. Ahn, I. W. Kim, S. J. Jeong and J. S. Lee, Mater. Lett. 64, 2219 (2010).
G. Q. Kang, K. Yao and J. Wang, J. Am. Ceram. Soc. 94, 1331 (2011).
J. G. Hao, B. Shen, J. W. Zhai, C. Z. Liu, X. L. Li and X. Y. Gao, J. Am. Ceram. Soc. 96, 3133 (2013).
W. Jo, T. Granzow, E. Aulbach, J. Rödel and D. Damjanovic, J. Appl. Phys. 105, 094102 (2009).
D. S. Lee, D. H. Lim, M. S. Kim, K. H. Kim and S. J. Jeong, Appl. Phys. Lett. 99, 062906 (2011).
C. Groh, D. J. Franzbach, W. Jo, K. G. Webber, J. Kling, L. A. Schmitt, H-J. Kleebe, S-J. Jeong, J-S. Lee and J. Rödel, Adv. Funct. Mater. 24, 356 (2014).
H. Zhang, C. Groh, Q. Zhang, W. Jo, K. G. Webber and J. Rödel, Adv. Electron. Mater. 1, 1500018 (2015).
T. Granzow, T. Leist, A. Kounga, E. Aulbach and J. Rödel, Appl. Phys. Lett. 91, 142904 (2007).
A. B. Kounga Njiwa, E. Aulbach, T. Granzow and J. Rödel, Acta Mater. 55, 675 (2007).
W. Jo, J. E. Daniels, J. L. Jones, X. Tan, P. A. Thomas, D. Damjanovic and J. Rödel, J. Appl. Phys. 109, 014110 (2011).
S. S. Sengupta, S. M. Park, D. A. Payne and L. H. Allen, J. Appl. Phys. 83, 2291 (1998).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ahn, C.W., Hong, CH., Choi, BY. et al. A brief review on relaxor ferroelectrics and selected issues in lead-free relaxors. Journal of the Korean Physical Society 68, 1481–1494 (2016). https://doi.org/10.3938/jkps.68.1481
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.3938/jkps.68.1481