Skip to main content

A brief review on relaxor ferroelectrics and selected issues in lead-free relaxors

Abstract

Relaxor ferroelectricity is one of the most widely investigated but the least understood material classes in the condensed matter physics. This is largely due to the lack of experimental tools that decisively confirm the existing theoretical models. In spite of the diversity in the models, they share the core idea that the observed features in relaxors are closely related to localized chemical heterogeneity. Given this, this review attempts to overview the existing models of importance chronologically, from the diffuse phase transition model to the random-field model and to show how the core idea has been reflected in them to better shape our insight into the nature of relaxor-related phenomena. Then, the discussion will be directed to how the models of a common consensus, developed with the so-called canonical relaxors such as Pb(Mg1/3Nb2/3)O3 (PMN) and (Pb, La)(Zr, Ti)O3 (PLZT), are compatible with phenomenological explanations for the recently identified relaxors such as (Bi1/2Na1/2)TiO3 (BNT)-based lead-free ferroelectrics. This review will be finalized with a discussion on the theoretical aspects of recently introduced 0−3 and 2−2 ferroelectric/relaxor composites as a practical tool for strain engineering.

This is a preview of subscription content, access via your institution.

References

  1. G. H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).

    Article  Google Scholar 

  2. G. A. Samara, Solid State Phys. 56, 239 (2001).

    ADS  Google Scholar 

  3. R. Blinc, Ferroelectrics 267, 3 (2002).

    Article  Google Scholar 

  4. M. Dawber, K. M. Rabe, and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005).

    ADS  Article  Google Scholar 

  5. J. F. Scott, Science 315, 954 (2007).

    ADS  Article  Google Scholar 

  6. N. Setter et al., J. Appl. Phys. 100, 051606 (2006).

    ADS  Article  Google Scholar 

  7. F. Jona and G. Shirane, Ferroelectric Crystals (The McMillan Company, New York, 1962).

    Google Scholar 

  8. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).

    Google Scholar 

  9. L. E. Cross, Ferroelectrics 76, 241 (1987).

    Article  Google Scholar 

  10. G. A. Smolenskii and A. I. Agranovskaya, Sov. Phys. Tech. Phys. 3, 1380 (1958).

    Google Scholar 

  11. V. V. Kirillov and V. A. Isupov, Ferroelectrics 5, 3 (1973).

    Article  Google Scholar 

  12. D. Viehland, S. J. Jang, L. E. Cross and M. Wuttig, J. Appl. Phys. 68, 2916 (1990).

    ADS  Article  Google Scholar 

  13. V. Westphal, W. Kleemann and M. Glinchuk, Phys. Rev. Lett. 68, 847 (1992).

    ADS  Article  Google Scholar 

  14. M. A. Akbas and P. K. Davies, J. Am. Ceram. Soc. 80, 2933 (1997).

    Article  Google Scholar 

  15. Z-Y. Cheng, R. S. Katiyar, X. Yao and A. Guo, Phys. Rev. B 55, 8165 (1997).

    ADS  Article  Google Scholar 

  16. R. Pirc and R. Blinc, Phys. Rev. B 60, 13470 (1999).

    ADS  Article  Google Scholar 

  17. G. A. Samara, J. Phys. Condens. Matter 15, R367 (2003).

    ADS  Article  Google Scholar 

  18. W. Kleemann, J. Mater. Sci. 41, 129 (2006).

    ADS  Article  Google Scholar 

  19. R. Blinc, V. V. Laguta, B. Zalar and J. Banys, J. Mater. Sci. 41, 27 (2006).

    ADS  Article  Google Scholar 

  20. R. A. Cowley, S. N. Gvasaliya, S. G. Lushnikov, B. Roessli and G. M. Rotaru, Adv. Phys. 60, 229 (2011).

    ADS  Article  Google Scholar 

  21. A. A. Bokov and Z-G. Ye, J. Adv. Dielectr. 2, 1241010 (2012).

    Article  Google Scholar 

  22. W. Kleemann, J. Adv. Dielectr. 2, 1241001 (2012).

    Article  Google Scholar 

  23. J. Hlinka, J. Adv. Dielectr. 2, 1241006 (2012).

    Article  Google Scholar 

  24. J. Galvagni, Opt. Eng. 29, 1389 (1990).

    ADS  Article  Google Scholar 

  25. D. Damjanovic and R. E. Newnham, J. Intel. Mat. Syst. Str. 3, 190 (1992).

    Article  Google Scholar 

  26. K. Uchino, Acta Mater. 46, 3745 (1998).

    Article  Google Scholar 

  27. S. Fujiwara, K. Furukawa, N. Kikuchi, O. Iizawa and H. Tanaka, High dielectric constant type ceramic composition (1981), US Patent 4,265,668, URL http://www.google.com.gh/patents/US4265668.

    Google Scholar 

  28. Y. Takeuchi and K. Kimura, Piezoelectric/electrostrictive actuator having ceramic substrate having recess defining thin-walled portion (1993), US Patent 5,210,455, http://www.google.com.gh/patents/US5210455.

    Google Scholar 

  29. A. Sutherland, K. Bridger, E. Fiore, J. Christodoulou, A. Bailey and A. Gelb, High energy density lead magnesium niobate-based dielectric ceramic and process for the preparation thereof (1994), US Patent 5,337,209, URL http://www.google.com.gh/patents/US5337209.

    Google Scholar 

  30. T. Gururaja, J. Fielding, T. Shrout and S. Jang, Electrostrictive ultrasonic probe having expanded operating temperature range (1994), US Patent 5,345,139, http://www.google.com.gh/patents/US5345139.

    Google Scholar 

  31. J. Mutton, H. Le, Q. Zhang, R. Adams, L. Cross, T. Shrout and Q. Jiang, Ferroelectric relaxor actuator for an ink-jet print head (1998), US Patent 5,790,156, URL http://www.google.com.gh/patents/US5790156.

    Google Scholar 

  32. W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H-J. Kleebe, A. J. Bell and J. Rödel, J. Appl. Phys. 110, 074106 (2011).

    ADS  Article  Google Scholar 

  33. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang and J. Rödel, J. Electroceram. 29, 71 (2012).

    Article  Google Scholar 

  34. C-H. Hong, H-P. Kim, B-Y. Choi, H-S. Han, J. S. Son, C.W. Ahn and W. Jo, J. Materiomics 2, 1 (2016).

    Article  Google Scholar 

  35. S-T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg and J. Rödel, Appl. Phys. Lett. 91, 112906 (2007).

    ADS  Article  Google Scholar 

  36. S-T. Zhang, A. B. Kounga, E. Aulbach, T. Granzow, W. Jo, H-J. Kleebe and J. Rödel, J. Appl. Phys. 103, 034107 (2008).

    ADS  Article  Google Scholar 

  37. S-T. Zhang, A. B. Kounga, E. Aulbach, W. Jo, T. Granzow, H. Ehrenberg and J. Rödel, J. Appl. Phys. 103, 034108 (2008).

    ADS  Article  Google Scholar 

  38. G. A. Smolenskii and A. I. Agranovskaya, Sov. Phys. Tech. Phys. 3, 1380 (1958).

    Google Scholar 

  39. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya and S. N. Popov, Sov. Phys. Solid State 2, 2584 (1961).

    Google Scholar 

  40. N. Setter and L. E. Cross, J. Appl. Phys. 51, 4356 (1980).

    ADS  Article  Google Scholar 

  41. C. G. F. Stenger, F. L. Scholten and A. J. Burggraaf, Solid State Commun. 32, 989 (1979).

    ADS  Article  Google Scholar 

  42. N. Setter and L. E. Cross, J. Mater. Sci. 15, 2478 (1980).

    ADS  Article  Google Scholar 

  43. G. Burns and B. A. Scott, Solid State Commun. 13, 423 (1973).

    ADS  Article  Google Scholar 

  44. G. A. Smolenskii, Jpn. J. Phys. Soc. S 28, 26 (1970).

    Google Scholar 

  45. A. K. Tagantsev, Phys. Rev. Lett. 72, 1100 (1994).

    ADS  Article  Google Scholar 

  46. A. E. Glazounov and A. K. Tagantsev, Appl. Phys. Lett. 73, 856 (1998).

    ADS  Article  Google Scholar 

  47. R. Clarke and J. C. Burfoot, Ferroelectrics 8, 505 (1974).

    Article  Google Scholar 

  48. J. Kuwata, K. Uchino and S. Nomura, Ferroelectrics 22, 863 (1979).

    Article  Google Scholar 

  49. G. Burns and F. Dacol, Phys. Rev. B 28, 2527 (1983).

    ADS  Article  Google Scholar 

  50. A. Bosak, D. Chernyshov, S. Vakhrushev and M. Krisch, Acta crystallogr. A 68, 117 (2012).

    ADS  Article  Google Scholar 

  51. H. Vogel, Phys. Z 22, 645 (1921).

    Google Scholar 

  52. G. S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925).

    Article  Google Scholar 

  53. G. Tammann, Z. Anorg. Allg. Chem. 156, 245 (1926).

    Article  Google Scholar 

  54. D. Viehland, M. Wuttig and L. E. Cross, Ferroelectrics 120, 71 (1991).

    Article  Google Scholar 

  55. Z. Kutnjak, C. Filipic, A. Levstik and R. Pirc, Phys. Rev. Lett. 70, 4015 (1993).

    ADS  Article  Google Scholar 

  56. J. Hemberger, H. Ries, A. Loidl and R. Böhmer, Phys. Rev. Lett. 76, 4015 (1996).

    Article  Google Scholar 

  57. S. N. Dorogovtsev and N. K. Yushin, Ferroelectrics 112, 27 (1990).

    Article  Google Scholar 

  58. A. Levstik, Z. Kutnjak, C. Filipic and R. Pirc, Phys. Rev. B 57, 11204 (1998).

    ADS  Article  Google Scholar 

  59. Z. Kutnjak, C. Filipic, R. Pirc, A. Levstik, R. Farhi and M. El Marssi, Phys. Rev. B 59, 294 (1999).

    ADS  Article  Google Scholar 

  60. R. Pirc and R. Blinc, Phys. Rev. B 76, 020101 (2007).

    ADS  Article  Google Scholar 

  61. M. Tachibana and E. Takayama-Muromachi, Phys. Rev. B 79, 100104 (2009).

    ADS  Article  Google Scholar 

  62. N. Novak, R. Pirc, M. Wencka and Z. Kutnjak, Phys. Rev. Lett. 109, 037601 (2012).

    ADS  Article  Google Scholar 

  63. S. B. Vakhrushev, B. E. Kryatkovsky, A. A. Naberenzhnov, N. M. Okuneva and B. P. Toperverg, Ferroelectrics 90, 173 (1989).

    Article  Google Scholar 

  64. H. Qian and L. A. Bursill, Int. J. Mond. Phys. B 10, 2007 (1996).

    ADS  Article  Google Scholar 

  65. A. Naberezhnov, S. Vakhrushev, B. Dorner, D. Strauch and H. Moudden, Eur. Phys. J. B 11, 13 (1999).

    ADS  Article  Google Scholar 

  66. K. Hirota, Z-G. Ye, S. Wakimoto, P. M. Gehring and G. Shirane, Phys. Rev. B 65, 104105 (2002).

    ADS  Article  Google Scholar 

  67. G. Xu, G. Shirane, J. R. D. Copley and P. M. Gehring, Phys. Rev. B 69, 064112 (2004).

    ADS  Article  Google Scholar 

  68. W. Jo, J. Daniels, D. Damjanovic, W. Kleemann and J. Rödel, Appl. Phys. Lett. 102, 192903 (2013).

    ADS  Article  Google Scholar 

  69. H. Arndt, F. Sauerbier, G. Schmidt and L. A. Shebanov, Ferroelectrics 79, 145 (1988).

    Article  Google Scholar 

  70. R. Sommer, N. K. Yushin and J. J. van der Klink, Phys. Rev. B 48, 13230 (1993).

    ADS  Article  Google Scholar 

  71. E. V. Colla, E. Y. Koroleva, N. M. Okuneva and S. B. Vakhrushev, Phys. Rev. Lett. 74, 1681 (1995).

    ADS  Article  Google Scholar 

  72. O. Bidault, M. Licheron, E. Husson and A. Morell, J. Phys.: Condens. Matter 8, 8017 (1996).

    ADS  Google Scholar 

  73. V. Bobnar, Z. Kutnjak, R. Pirc and A. Levstik, Phys. Rev. B 60, 6420 (1999).

    ADS  Article  Google Scholar 

  74. Y. Imry and S-K. Ma, Phys. Rev. Lett. 35, 1399 (1975).

    ADS  Article  Google Scholar 

  75. B. P. Burton, E. Cockayne and U. V. Waghmare, Phys. Rev. B 72, 064113 (2005).

    ADS  Article  Google Scholar 

  76. B. J. Rodriguez, S. Jesse, A. A. Bokov, Z-G. Ye and S. V. Kalinin, Appl. Phys. Lett. 95, 092904 (2009).

    ADS  Article  Google Scholar 

  77. A. R. Bishop, A. Bussmann-Holder, S. Kamba and M. Maglione, Phys. Rev. B 81, 064106 (2010).

    ADS  Article  Google Scholar 

  78. V. V. Shvartsman, J. Dec, S. Miga, T. Lukasiewicz and W. Kleemann, Ferroelectrics 376, 1 (2008).

    Article  Google Scholar 

  79. V. V. Shvartsman, W. Kleemann, T. Lukasiewicz and J. Dec, Phys. Rev. B 77, 054105 (2008).

    ADS  Article  Google Scholar 

  80. D. S. Fisher, G. M. Grinstein and A. Khurana, Phys. Today 41, 56 (1988).

    ADS  Article  Google Scholar 

  81. V. V. Shvartsman, J. Dec, Z. K. Xu, J. Banys, P. Keburis and W. Kleemann, Phase Trans. 81, 11 (2008).

    Article  Google Scholar 

  82. V. V. Shvartsman, J. Zhai and W. Kleemann, Ferroelectrics 379, 77 (2009).

    Article  Google Scholar 

  83. C. Laulhé, F. Hippert, J. Kreisel, A. Pasturel, A. Simon, J-L. Hazemann, R. Bellissent and G. J. Cuello, Phase Trans. 84, 438 (2011).

    Article  Google Scholar 

  84. P. K. Davies, Curr. Opin. Solid State Mater. Sci. 4, 467 (1999).

    ADS  Article  Google Scholar 

  85. Z-Y. Cheng, R. S. Katiyar, X. Yao and A. Guo, Phys. Rev. B 55, 8165 (1997).

    ADS  Article  Google Scholar 

  86. D. Lin, Z. Li, S. Zhang, Z. Xu and X. Yao, Solid State Commun. 149, 1646 (2009).

    ADS  Article  Google Scholar 

  87. A. A. Bokov and Z-G. Ye, J. Mater. Sci. 41, 31 (2006).

    ADS  Article  Google Scholar 

  88. S-T. Zhang, A. B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel and D. Damjanovic, Adv. Mater. 21, 4716 (2009).

    Article  Google Scholar 

  89. J. Rödel, W. Jo, K. T. P. Seifert, E-M. Anton, T. Granzow and D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009).

    Article  Google Scholar 

  90. V. V. Shvartsman and D. C. Lupascu, J. Am. Ceram. Soc. 95, 1 (2012).

    Article  Google Scholar 

  91. V. Dorcet, G. Trolliard and P. Boullay, Chem. Mater. 20, 5061 (2008).

    Article  Google Scholar 

  92. F. Cordero, F. Craciun, F. Trequattrini, E. Mercadelli and C. Galassi, Phys. Rev. B 81, 144124 (2010).

    ADS  Article  Google Scholar 

  93. W. Jo and J. Rödel, Appl. Phys. Lett. 99, 042901 (2011).

    ADS  Article  Google Scholar 

  94. J. E. Daniels, W. Jo, J. Rödel and J. L. Jones, Appl. Phys. Lett. 95, 032904 (2009).

    ADS  Article  Google Scholar 

  95. J. E. Daniels, W. Jo, J. Rödel, V. Honkimäki and J. L. Jones, Acta Mater. 58, 2103 (2010).

    Article  Google Scholar 

  96. W. Ge, H. Cao, J. Li, D. Viehland, Q. Zhang and H. Luo, Appl. Phys. Lett. 95, 162903 (2009).

    ADS  Article  Google Scholar 

  97. G. Picht, J. Töpfer and E. Hennig, J. Eur. Ceram. Soc. 30, 3445 (2010).

    Article  Google Scholar 

  98. J. Kling, X. Tan, W. Jo, H-J. Kleebe, H. Fuess and J. Rödel, J. Am. Ceram. Soc. 93, 2452 (2010).

    Article  Google Scholar 

  99. M. Hinterstein, M. Knapp, M. Hölzel, W. Jo, A. Cervellino, H. Ehrenberg and H. Fuess, J. Appl. Crystallogr. 43, 1314 (2010).

    Article  Google Scholar 

  100. H. Simons, J. Daniels, W. Jo, R. Dittmer, A. Studer, M. Avdeev, J. Rödel and M. Hoffman, Appl. Phys. Lett. 98, 082901 (2011).

    ADS  Article  Google Scholar 

  101. H. Wanga, H. Xu, H. Luo, Z. Yin, A. A. Bokov and Z-G. Ye, Appl. Phys. Lett. 87, 012904 (2005).

    ADS  Article  Google Scholar 

  102. E. Sapper, S. Schaab, W. Jo, T. Granzow and J. Rödel, J. Appl. Phys. 111, 014105 (2012).

    ADS  Article  Google Scholar 

  103. K. N. Pham, A. Hussain, C. W. Ahn, I. W. Kim, S. J. Jeong and J. S. Lee, Mater. Lett. 64, 2219 (2010).

    Article  Google Scholar 

  104. G. Q. Kang, K. Yao and J. Wang, J. Am. Ceram. Soc. 94, 1331 (2011).

    Article  Google Scholar 

  105. J. G. Hao, B. Shen, J. W. Zhai, C. Z. Liu, X. L. Li and X. Y. Gao, J. Am. Ceram. Soc. 96, 3133 (2013).

    Article  Google Scholar 

  106. W. Jo, T. Granzow, E. Aulbach, J. Rödel and D. Damjanovic, J. Appl. Phys. 105, 094102 (2009).

    ADS  Article  Google Scholar 

  107. D. S. Lee, D. H. Lim, M. S. Kim, K. H. Kim and S. J. Jeong, Appl. Phys. Lett. 99, 062906 (2011).

    ADS  Article  Google Scholar 

  108. C. Groh, D. J. Franzbach, W. Jo, K. G. Webber, J. Kling, L. A. Schmitt, H-J. Kleebe, S-J. Jeong, J-S. Lee and J. Rödel, Adv. Funct. Mater. 24, 356 (2014).

    Article  Google Scholar 

  109. H. Zhang, C. Groh, Q. Zhang, W. Jo, K. G. Webber and J. Rödel, Adv. Electron. Mater. 1, 1500018 (2015).

    Google Scholar 

  110. T. Granzow, T. Leist, A. Kounga, E. Aulbach and J. Rödel, Appl. Phys. Lett. 91, 142904 (2007).

    ADS  Article  Google Scholar 

  111. A. B. Kounga Njiwa, E. Aulbach, T. Granzow and J. Rödel, Acta Mater. 55, 675 (2007).

    Article  Google Scholar 

  112. W. Jo, J. E. Daniels, J. L. Jones, X. Tan, P. A. Thomas, D. Damjanovic and J. Rödel, J. Appl. Phys. 109, 014110 (2011).

    ADS  Article  Google Scholar 

  113. S. S. Sengupta, S. M. Park, D. A. Payne and L. H. Allen, J. Appl. Phys. 83, 2291 (1998).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wook Jo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahn, C.W., Hong, CH., Choi, BY. et al. A brief review on relaxor ferroelectrics and selected issues in lead-free relaxors. Journal of the Korean Physical Society 68, 1481–1494 (2016). https://doi.org/10.3938/jkps.68.1481

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.1481

Keywords

  • Relaxor ferroelectrics
  • Diffuse phase transition
  • Superparaelectric model
  • Dipolar glass model
  • Random field model
  • Lead-free bismuth-based relaxor
  • Incipient piezoelectricity
  • Ferroelectric/relaxor composites