Advertisement

Journal of the Korean Physical Society

, Volume 68, Issue 12, pp 1481–1494 | Cite as

A brief review on relaxor ferroelectrics and selected issues in lead-free relaxors

  • Chang Won Ahn
  • Chang-Hyo Hong
  • Byung-Yul Choi
  • Hwang-Pill Kim
  • Hyoung-Su Han
  • Younghun Hwang
  • Wook JoEmail author
  • Ke Wang
  • Jing-Feng Li
  • Jae-Shin Lee
  • Ill Won Kim
Article

Abstract

Relaxor ferroelectricity is one of the most widely investigated but the least understood material classes in the condensed matter physics. This is largely due to the lack of experimental tools that decisively confirm the existing theoretical models. In spite of the diversity in the models, they share the core idea that the observed features in relaxors are closely related to localized chemical heterogeneity. Given this, this review attempts to overview the existing models of importance chronologically, from the diffuse phase transition model to the random-field model and to show how the core idea has been reflected in them to better shape our insight into the nature of relaxor-related phenomena. Then, the discussion will be directed to how the models of a common consensus, developed with the so-called canonical relaxors such as Pb(Mg1/3Nb2/3)O3 (PMN) and (Pb, La)(Zr, Ti)O3 (PLZT), are compatible with phenomenological explanations for the recently identified relaxors such as (Bi1/2Na1/2)TiO3 (BNT)-based lead-free ferroelectrics. This review will be finalized with a discussion on the theoretical aspects of recently introduced 0−3 and 2−2 ferroelectric/relaxor composites as a practical tool for strain engineering.

Keywords

Relaxor ferroelectrics Diffuse phase transition Superparaelectric model Dipolar glass model Random field model Lead-free bismuth-based relaxor Incipient piezoelectricity Ferroelectric/relaxor composites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).CrossRefGoogle Scholar
  2. [2]
    G. A. Samara, Solid State Phys. 56, 239 (2001).ADSGoogle Scholar
  3. [3]
    R. Blinc, Ferroelectrics 267, 3 (2002).CrossRefGoogle Scholar
  4. [4]
    M. Dawber, K. M. Rabe, and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005).ADSCrossRefGoogle Scholar
  5. [5]
    J. F. Scott, Science 315, 954 (2007).ADSCrossRefGoogle Scholar
  6. [6]
    N. Setter et al., J. Appl. Phys. 100, 051606 (2006).ADSCrossRefGoogle Scholar
  7. [7]
    F. Jona and G. Shirane, Ferroelectric Crystals (The McMillan Company, New York, 1962).Google Scholar
  8. [8]
    M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).Google Scholar
  9. [9]
    L. E. Cross, Ferroelectrics 76, 241 (1987).CrossRefGoogle Scholar
  10. [10]
    G. A. Smolenskii and A. I. Agranovskaya, Sov. Phys. Tech. Phys. 3, 1380 (1958).Google Scholar
  11. [11]
    V. V. Kirillov and V. A. Isupov, Ferroelectrics 5, 3 (1973).CrossRefGoogle Scholar
  12. [12]
    D. Viehland, S. J. Jang, L. E. Cross and M. Wuttig, J. Appl. Phys. 68, 2916 (1990).ADSCrossRefGoogle Scholar
  13. [13]
    V. Westphal, W. Kleemann and M. Glinchuk, Phys. Rev. Lett. 68, 847 (1992).ADSCrossRefGoogle Scholar
  14. [14]
    M. A. Akbas and P. K. Davies, J. Am. Ceram. Soc. 80, 2933 (1997).CrossRefGoogle Scholar
  15. [15]
    Z-Y. Cheng, R. S. Katiyar, X. Yao and A. Guo, Phys. Rev. B 55, 8165 (1997).ADSCrossRefGoogle Scholar
  16. [16]
    R. Pirc and R. Blinc, Phys. Rev. B 60, 13470 (1999).ADSCrossRefGoogle Scholar
  17. [17]
    G. A. Samara, J. Phys. Condens. Matter 15, R367 (2003).ADSCrossRefGoogle Scholar
  18. [18]
    W. Kleemann, J. Mater. Sci. 41, 129 (2006).ADSCrossRefGoogle Scholar
  19. [19]
    R. Blinc, V. V. Laguta, B. Zalar and J. Banys, J. Mater. Sci. 41, 27 (2006).ADSCrossRefGoogle Scholar
  20. [20]
    R. A. Cowley, S. N. Gvasaliya, S. G. Lushnikov, B. Roessli and G. M. Rotaru, Adv. Phys. 60, 229 (2011).ADSCrossRefGoogle Scholar
  21. [21]
    A. A. Bokov and Z-G. Ye, J. Adv. Dielectr. 2, 1241010 (2012).CrossRefGoogle Scholar
  22. [22]
    W. Kleemann, J. Adv. Dielectr. 2, 1241001 (2012).CrossRefGoogle Scholar
  23. [23]
    J. Hlinka, J. Adv. Dielectr. 2, 1241006 (2012).CrossRefGoogle Scholar
  24. [24]
    J. Galvagni, Opt. Eng. 29, 1389 (1990).ADSCrossRefGoogle Scholar
  25. [25]
    D. Damjanovic and R. E. Newnham, J. Intel. Mat. Syst. Str. 3, 190 (1992).CrossRefGoogle Scholar
  26. [26]
    K. Uchino, Acta Mater. 46, 3745 (1998).CrossRefGoogle Scholar
  27. [27]
    S. Fujiwara, K. Furukawa, N. Kikuchi, O. Iizawa and H. Tanaka, High dielectric constant type ceramic composition (1981), US Patent 4,265,668, URL http://www.google.com.gh/patents/US4265668.Google Scholar
  28. [28]
    Y. Takeuchi and K. Kimura, Piezoelectric/electrostrictive actuator having ceramic substrate having recess defining thin-walled portion (1993), US Patent 5,210,455, http://www.google.com.gh/patents/US5210455.Google Scholar
  29. [29]
    A. Sutherland, K. Bridger, E. Fiore, J. Christodoulou, A. Bailey and A. Gelb, High energy density lead magnesium niobate-based dielectric ceramic and process for the preparation thereof (1994), US Patent 5,337,209, URL http://www.google.com.gh/patents/US5337209.Google Scholar
  30. [30]
    T. Gururaja, J. Fielding, T. Shrout and S. Jang, Electrostrictive ultrasonic probe having expanded operating temperature range (1994), US Patent 5,345,139, http://www.google.com.gh/patents/US5345139.Google Scholar
  31. [31]
    J. Mutton, H. Le, Q. Zhang, R. Adams, L. Cross, T. Shrout and Q. Jiang, Ferroelectric relaxor actuator for an ink-jet print head (1998), US Patent 5,790,156, URL http://www.google.com.gh/patents/US5790156.Google Scholar
  32. [32]
    W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H-J. Kleebe, A. J. Bell and J. Rödel, J. Appl. Phys. 110, 074106 (2011).ADSCrossRefGoogle Scholar
  33. [33]
    W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang and J. Rödel, J. Electroceram. 29, 71 (2012).CrossRefGoogle Scholar
  34. [34]
    C-H. Hong, H-P. Kim, B-Y. Choi, H-S. Han, J. S. Son, C.W. Ahn and W. Jo, J. Materiomics 2, 1 (2016).CrossRefGoogle Scholar
  35. [35]
    S-T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg and J. Rödel, Appl. Phys. Lett. 91, 112906 (2007).ADSCrossRefGoogle Scholar
  36. [36]
    S-T. Zhang, A. B. Kounga, E. Aulbach, T. Granzow, W. Jo, H-J. Kleebe and J. Rödel, J. Appl. Phys. 103, 034107 (2008).ADSCrossRefGoogle Scholar
  37. [37]
    S-T. Zhang, A. B. Kounga, E. Aulbach, W. Jo, T. Granzow, H. Ehrenberg and J. Rödel, J. Appl. Phys. 103, 034108 (2008).ADSCrossRefGoogle Scholar
  38. [38]
    G. A. Smolenskii and A. I. Agranovskaya, Sov. Phys. Tech. Phys. 3, 1380 (1958).Google Scholar
  39. [39]
    G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya and S. N. Popov, Sov. Phys. Solid State 2, 2584 (1961).Google Scholar
  40. [40]
    N. Setter and L. E. Cross, J. Appl. Phys. 51, 4356 (1980).ADSCrossRefGoogle Scholar
  41. [41]
    C. G. F. Stenger, F. L. Scholten and A. J. Burggraaf, Solid State Commun. 32, 989 (1979).ADSCrossRefGoogle Scholar
  42. [42]
    N. Setter and L. E. Cross, J. Mater. Sci. 15, 2478 (1980).ADSCrossRefGoogle Scholar
  43. [43]
    G. Burns and B. A. Scott, Solid State Commun. 13, 423 (1973).ADSCrossRefGoogle Scholar
  44. [44]
    G. A. Smolenskii, Jpn. J. Phys. Soc. S 28, 26 (1970).Google Scholar
  45. [45]
    A. K. Tagantsev, Phys. Rev. Lett. 72, 1100 (1994).ADSCrossRefGoogle Scholar
  46. [46]
    A. E. Glazounov and A. K. Tagantsev, Appl. Phys. Lett. 73, 856 (1998).ADSCrossRefGoogle Scholar
  47. [47]
    R. Clarke and J. C. Burfoot, Ferroelectrics 8, 505 (1974).CrossRefGoogle Scholar
  48. [48]
    J. Kuwata, K. Uchino and S. Nomura, Ferroelectrics 22, 863 (1979).CrossRefGoogle Scholar
  49. [49]
    G. Burns and F. Dacol, Phys. Rev. B 28, 2527 (1983).ADSCrossRefGoogle Scholar
  50. [50]
    A. Bosak, D. Chernyshov, S. Vakhrushev and M. Krisch, Acta crystallogr. A 68, 117 (2012).ADSCrossRefGoogle Scholar
  51. [51]
    H. Vogel, Phys. Z 22, 645 (1921).Google Scholar
  52. [52]
    G. S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925).CrossRefGoogle Scholar
  53. [53]
    G. Tammann, Z. Anorg. Allg. Chem. 156, 245 (1926).CrossRefGoogle Scholar
  54. [54]
    D. Viehland, M. Wuttig and L. E. Cross, Ferroelectrics 120, 71 (1991).CrossRefGoogle Scholar
  55. [55]
    Z. Kutnjak, C. Filipic, A. Levstik and R. Pirc, Phys. Rev. Lett. 70, 4015 (1993).ADSCrossRefGoogle Scholar
  56. [56]
    J. Hemberger, H. Ries, A. Loidl and R. Böhmer, Phys. Rev. Lett. 76, 4015 (1996).CrossRefGoogle Scholar
  57. [57]
    S. N. Dorogovtsev and N. K. Yushin, Ferroelectrics 112, 27 (1990).CrossRefGoogle Scholar
  58. [58]
    A. Levstik, Z. Kutnjak, C. Filipic and R. Pirc, Phys. Rev. B 57, 11204 (1998).ADSCrossRefGoogle Scholar
  59. [59]
    Z. Kutnjak, C. Filipic, R. Pirc, A. Levstik, R. Farhi and M. El Marssi, Phys. Rev. B 59, 294 (1999).ADSCrossRefGoogle Scholar
  60. [60]
    R. Pirc and R. Blinc, Phys. Rev. B 76, 020101 (2007).ADSCrossRefGoogle Scholar
  61. [61]
    M. Tachibana and E. Takayama-Muromachi, Phys. Rev. B 79, 100104 (2009).ADSCrossRefGoogle Scholar
  62. [62]
    N. Novak, R. Pirc, M. Wencka and Z. Kutnjak, Phys. Rev. Lett. 109, 037601 (2012).ADSCrossRefGoogle Scholar
  63. [63]
    S. B. Vakhrushev, B. E. Kryatkovsky, A. A. Naberenzhnov, N. M. Okuneva and B. P. Toperverg, Ferroelectrics 90, 173 (1989).CrossRefGoogle Scholar
  64. [64]
    H. Qian and L. A. Bursill, Int. J. Mond. Phys. B 10, 2007 (1996).ADSCrossRefGoogle Scholar
  65. [65]
    A. Naberezhnov, S. Vakhrushev, B. Dorner, D. Strauch and H. Moudden, Eur. Phys. J. B 11, 13 (1999).ADSCrossRefGoogle Scholar
  66. [66]
    K. Hirota, Z-G. Ye, S. Wakimoto, P. M. Gehring and G. Shirane, Phys. Rev. B 65, 104105 (2002).ADSCrossRefGoogle Scholar
  67. [67]
    G. Xu, G. Shirane, J. R. D. Copley and P. M. Gehring, Phys. Rev. B 69, 064112 (2004).ADSCrossRefGoogle Scholar
  68. [68]
    W. Jo, J. Daniels, D. Damjanovic, W. Kleemann and J. Rödel, Appl. Phys. Lett. 102, 192903 (2013).ADSCrossRefGoogle Scholar
  69. [69]
    H. Arndt, F. Sauerbier, G. Schmidt and L. A. Shebanov, Ferroelectrics 79, 145 (1988).CrossRefGoogle Scholar
  70. [70]
    R. Sommer, N. K. Yushin and J. J. van der Klink, Phys. Rev. B 48, 13230 (1993).ADSCrossRefGoogle Scholar
  71. [71]
    E. V. Colla, E. Y. Koroleva, N. M. Okuneva and S. B. Vakhrushev, Phys. Rev. Lett. 74, 1681 (1995).ADSCrossRefGoogle Scholar
  72. [72]
    O. Bidault, M. Licheron, E. Husson and A. Morell, J. Phys.: Condens. Matter 8, 8017 (1996).ADSGoogle Scholar
  73. [73]
    V. Bobnar, Z. Kutnjak, R. Pirc and A. Levstik, Phys. Rev. B 60, 6420 (1999).ADSCrossRefGoogle Scholar
  74. [74]
    Y. Imry and S-K. Ma, Phys. Rev. Lett. 35, 1399 (1975).ADSCrossRefGoogle Scholar
  75. [75]
    B. P. Burton, E. Cockayne and U. V. Waghmare, Phys. Rev. B 72, 064113 (2005).ADSCrossRefGoogle Scholar
  76. [76]
    B. J. Rodriguez, S. Jesse, A. A. Bokov, Z-G. Ye and S. V. Kalinin, Appl. Phys. Lett. 95, 092904 (2009).ADSCrossRefGoogle Scholar
  77. [77]
    A. R. Bishop, A. Bussmann-Holder, S. Kamba and M. Maglione, Phys. Rev. B 81, 064106 (2010).ADSCrossRefGoogle Scholar
  78. [78]
    V. V. Shvartsman, J. Dec, S. Miga, T. Lukasiewicz and W. Kleemann, Ferroelectrics 376, 1 (2008).CrossRefGoogle Scholar
  79. [79]
    V. V. Shvartsman, W. Kleemann, T. Lukasiewicz and J. Dec, Phys. Rev. B 77, 054105 (2008).ADSCrossRefGoogle Scholar
  80. [80]
    D. S. Fisher, G. M. Grinstein and A. Khurana, Phys. Today 41, 56 (1988).ADSCrossRefGoogle Scholar
  81. [81]
    V. V. Shvartsman, J. Dec, Z. K. Xu, J. Banys, P. Keburis and W. Kleemann, Phase Trans. 81, 11 (2008).CrossRefGoogle Scholar
  82. [82]
    V. V. Shvartsman, J. Zhai and W. Kleemann, Ferroelectrics 379, 77 (2009).CrossRefGoogle Scholar
  83. [83]
    C. Laulhé, F. Hippert, J. Kreisel, A. Pasturel, A. Simon, J-L. Hazemann, R. Bellissent and G. J. Cuello, Phase Trans. 84, 438 (2011).CrossRefGoogle Scholar
  84. [84]
    P. K. Davies, Curr. Opin. Solid State Mater. Sci. 4, 467 (1999).ADSCrossRefGoogle Scholar
  85. [85]
    Z-Y. Cheng, R. S. Katiyar, X. Yao and A. Guo, Phys. Rev. B 55, 8165 (1997).ADSCrossRefGoogle Scholar
  86. [86]
    D. Lin, Z. Li, S. Zhang, Z. Xu and X. Yao, Solid State Commun. 149, 1646 (2009).ADSCrossRefGoogle Scholar
  87. [87]
    A. A. Bokov and Z-G. Ye, J. Mater. Sci. 41, 31 (2006).ADSCrossRefGoogle Scholar
  88. [88]
    S-T. Zhang, A. B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel and D. Damjanovic, Adv. Mater. 21, 4716 (2009).CrossRefGoogle Scholar
  89. [89]
    J. Rödel, W. Jo, K. T. P. Seifert, E-M. Anton, T. Granzow and D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009).CrossRefGoogle Scholar
  90. [90]
    V. V. Shvartsman and D. C. Lupascu, J. Am. Ceram. Soc. 95, 1 (2012).CrossRefGoogle Scholar
  91. [91]
    V. Dorcet, G. Trolliard and P. Boullay, Chem. Mater. 20, 5061 (2008).CrossRefGoogle Scholar
  92. [92]
    F. Cordero, F. Craciun, F. Trequattrini, E. Mercadelli and C. Galassi, Phys. Rev. B 81, 144124 (2010).ADSCrossRefGoogle Scholar
  93. [93]
    W. Jo and J. Rödel, Appl. Phys. Lett. 99, 042901 (2011).ADSCrossRefGoogle Scholar
  94. [94]
    J. E. Daniels, W. Jo, J. Rödel and J. L. Jones, Appl. Phys. Lett. 95, 032904 (2009).ADSCrossRefGoogle Scholar
  95. [95]
    J. E. Daniels, W. Jo, J. Rödel, V. Honkimäki and J. L. Jones, Acta Mater. 58, 2103 (2010).CrossRefGoogle Scholar
  96. [96]
    W. Ge, H. Cao, J. Li, D. Viehland, Q. Zhang and H. Luo, Appl. Phys. Lett. 95, 162903 (2009).ADSCrossRefGoogle Scholar
  97. [97]
    G. Picht, J. Töpfer and E. Hennig, J. Eur. Ceram. Soc. 30, 3445 (2010).CrossRefGoogle Scholar
  98. [98]
    J. Kling, X. Tan, W. Jo, H-J. Kleebe, H. Fuess and J. Rödel, J. Am. Ceram. Soc. 93, 2452 (2010).CrossRefGoogle Scholar
  99. [99]
    M. Hinterstein, M. Knapp, M. Hölzel, W. Jo, A. Cervellino, H. Ehrenberg and H. Fuess, J. Appl. Crystallogr. 43, 1314 (2010).CrossRefGoogle Scholar
  100. [100]
    H. Simons, J. Daniels, W. Jo, R. Dittmer, A. Studer, M. Avdeev, J. Rödel and M. Hoffman, Appl. Phys. Lett. 98, 082901 (2011).ADSCrossRefGoogle Scholar
  101. [101]
    H. Wanga, H. Xu, H. Luo, Z. Yin, A. A. Bokov and Z-G. Ye, Appl. Phys. Lett. 87, 012904 (2005).ADSCrossRefGoogle Scholar
  102. [102]
    E. Sapper, S. Schaab, W. Jo, T. Granzow and J. Rödel, J. Appl. Phys. 111, 014105 (2012).ADSCrossRefGoogle Scholar
  103. [103]
    K. N. Pham, A. Hussain, C. W. Ahn, I. W. Kim, S. J. Jeong and J. S. Lee, Mater. Lett. 64, 2219 (2010).CrossRefGoogle Scholar
  104. [104]
    G. Q. Kang, K. Yao and J. Wang, J. Am. Ceram. Soc. 94, 1331 (2011).CrossRefGoogle Scholar
  105. [105]
    J. G. Hao, B. Shen, J. W. Zhai, C. Z. Liu, X. L. Li and X. Y. Gao, J. Am. Ceram. Soc. 96, 3133 (2013).CrossRefGoogle Scholar
  106. [106]
    W. Jo, T. Granzow, E. Aulbach, J. Rödel and D. Damjanovic, J. Appl. Phys. 105, 094102 (2009).ADSCrossRefGoogle Scholar
  107. [107]
    D. S. Lee, D. H. Lim, M. S. Kim, K. H. Kim and S. J. Jeong, Appl. Phys. Lett. 99, 062906 (2011).ADSCrossRefGoogle Scholar
  108. [108]
    C. Groh, D. J. Franzbach, W. Jo, K. G. Webber, J. Kling, L. A. Schmitt, H-J. Kleebe, S-J. Jeong, J-S. Lee and J. Rödel, Adv. Funct. Mater. 24, 356 (2014).CrossRefGoogle Scholar
  109. [109]
    H. Zhang, C. Groh, Q. Zhang, W. Jo, K. G. Webber and J. Rödel, Adv. Electron. Mater. 1, 1500018 (2015).Google Scholar
  110. [110]
    T. Granzow, T. Leist, A. Kounga, E. Aulbach and J. Rödel, Appl. Phys. Lett. 91, 142904 (2007).ADSCrossRefGoogle Scholar
  111. [111]
    A. B. Kounga Njiwa, E. Aulbach, T. Granzow and J. Rödel, Acta Mater. 55, 675 (2007).CrossRefGoogle Scholar
  112. [112]
    W. Jo, J. E. Daniels, J. L. Jones, X. Tan, P. A. Thomas, D. Damjanovic and J. Rödel, J. Appl. Phys. 109, 014110 (2011).ADSCrossRefGoogle Scholar
  113. [113]
    S. S. Sengupta, S. M. Park, D. A. Payne and L. H. Allen, J. Appl. Phys. 83, 2291 (1998).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2016

Authors and Affiliations

  • Chang Won Ahn
    • 1
  • Chang-Hyo Hong
    • 2
  • Byung-Yul Choi
    • 2
  • Hwang-Pill Kim
    • 2
  • Hyoung-Su Han
    • 2
  • Younghun Hwang
    • 2
  • Wook Jo
    • 2
    Email author
  • Ke Wang
    • 3
  • Jing-Feng Li
    • 3
  • Jae-Shin Lee
    • 4
  • Ill Won Kim
    • 5
  1. 1.Department of Physics and EHSRCUniversity of UlsanUlsanKorea
  2. 2.School of Materials Science and EngineeringUlsan National Institute of Science and TechnologyUlsanKorea
  3. 3.School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  4. 4.School of Materials Science and EngineeringUniversity of UlsanUlsanKorea
  5. 5.Department of PhysicsUniversity of UlsanUlsanKorea

Personalised recommendations