Skip to main content
Log in

Effect of Er3+ and Yb3+ co-doping on the performance of a ZnO-based DSSC

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Zinc-oxide (ZnO) nanoparticles (NPs) co-doped with different concentrations of rare-earth ions of erbium and ytterbium, (ZnO: Er3+, Yb3+) were synthesized for applications to ZnO-based dye sensitized solar cells (DSSC). The composite NPs used for the photoelectrode (PE) were synthesized using a simple co-precipitation technique. X-ray diffraction and scanning electron microscopy measurements on the prepared samples revealed a single phase wurzite ZnO powder with approximate sizes in the range from 15 to 20 nm. Photoluminescence (PL) measurements confirmed that the synthesized composite NPs had a good up-conversion (UPC) property. The prepared powders were directly used to make PEs for DSSCs. The photovoltaic efficiency of the DSSCs was enhanced compared to that of pure ZnO-based DSSCs. Particularly, the PE made up of ZnO: Er3+, Yb3+ NPs with 4 wt% of Er3+ and Yb3+ generates a short-circuit current density (J sc ) of 4.794 mA·cm −2 and an open circuit voltage (V oc ) of 0.602 V with an efficiency (η) of 1.58%. The result indicates a 48.4% J sc improvement compared to a pure ZnO PE-based DSSC. The photocurrent improvement is due to an increase in the light-harvesting capacity of the PEs attained through the UPC property of ZnO: Er3+, Yb3+ NPs. As confirmed by PL and electrochemical impedance spectra (EIS), the use of ZnO: Er3+,Yb3+ NPs as PEs for DSSCs enhances charge concentration and transport as a result of n-type doping. However, all ZnO: Er3+, Yb3+ NP based PEs exhibited a lower V oc as a result of a down shift in the Fermi energy, which affects the overall efficiency of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. L. Wang, J. Phys.: Condens. Matter 16, R829 (2004).

    ADS  Google Scholar 

  2. L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger and F. Levy, J. Appl. Phys. 75, 633 (1994).

    Article  ADS  Google Scholar 

  3. K. Keis, J. Lindgren, S. E. Lindquist and A. Hagfeldt, Langmuir 16, 4688 (2000).

    Article  Google Scholar 

  4. T. Horiuchi, H. Miura, K. Sumioka and S. Uchida, J. Am. Chem. Soc. 126, 12219 (2004).

    Article  Google Scholar 

  5. S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy and D. J. Norris, Nature 436, 91 (2005).

    Article  ADS  Google Scholar 

  6. M. Kohls, M. Bonanni and L. Spanhela, Appl. Phys. Lett. 81, 20 (2002).

    Article  Google Scholar 

  7. J. Reszczynska, T. Grzyb, J. W. Sobczak, W. Lisowskic, M. Gazda, B. Ohtanie and A. Zaleska, App. Catalysis B: Environ. 40, 163 (2015).

    Google Scholar 

  8. J. Zhang, W. Peng, Z. Chen, H. Chen and L. Han, J. Phys. Chem. C 116, 19182 (2012).

    Article  Google Scholar 

  9. L. Zhang, Y. Yang, R. Fan, J. Yu and L. Li, J. Mater. Chem. A 1, 12066 (2013).

    Article  Google Scholar 

  10. J. X. Zhao, X. H. Lu, Y. Z. Zheng, S. Q. Bi, X. Tao, J. F. Chen and W. Zhou, Electrochem. Commun. 32, 14 (2013).

    Article  ADS  Google Scholar 

  11. M. Lluscà, J. López-Vidrier, A. Antonya, S. Hernándezb, B. Garridob and J. Bertomeua, Thin Solid Films 562, 456 (2014).

    Article  ADS  Google Scholar 

  12. N. Yao, J. Huang, K. Fu, S. Liu, E. Dong, Y. Wang, X. Xu, M. Zhu and B. Cao, J. Power Sources 267, 405 (2014).

    Article  ADS  Google Scholar 

  13. J. Zhang, H. Shen, W. Guo, S. Wang, C. Zhu, F. Xue, J. Hou, H. Su and Z. Yuan, J. Power Sources 226, 47 (2013).

    Article  ADS  Google Scholar 

  14. S. Bishnoi, N. Khichar, R. Das, V. Kumar, R. K. Kotnala and S. Chawla, RSC Adv. 4, 32726 (2014).

    Article  Google Scholar 

  15. M. A. Vasquez-A., O. Goiz, R. Baca-Arroyo, J. A. Andraca-Adame, G. Romero-Paredes and R. Pena-Sierra, J. Nanosci. Nanotechnol. 12, 9234 (2012).

    Article  Google Scholar 

  16. A. George, S. K. Sharma, S. Chawla, M. M. Malik and M. S. Qureshi, J. Alloys Compd. 509, 5942 (2011).

    Article  Google Scholar 

  17. V. Gandhi, R. Ganesan, H. A. Syedahamed and M. Thaiyan, J. Phys. Chem. C 118, 9715 (2014).

    Article  Google Scholar 

  18. H. Li, Z. Zhang, J. Huang, R. Liu and Q. Wang, J. Alloys Compd. 550, 526 (2013).

    Article  Google Scholar 

  19. Y. Zhang, A. H. Yuwono, J. Wang and J. Li, J. Phys. Chem. C 113, 2140 (2009).

    Google Scholar 

  20. J. Wang, J. Lin, J. Wu, M. Huang, Z. Lan, Y. Chen, S. Tang, L. Fan and Y. Huang, Electrochimica Acta 70, 131 (2012).

    Article  Google Scholar 

  21. N. Khichar, S. Bishnoi and S. Chawla, RSC Adv. 4, 18811 (2014).

    Article  Google Scholar 

  22. X. Wei, W. Wang and K. Chen, J. Phys. Chem. C 117, 23716 (2013).

    Article  Google Scholar 

  23. Q. Zhang, E. Uchaker, S. L. Candelariaz and G. Cao, Chem. Soc. Rev. 42, 3127 (2013).

    Article  Google Scholar 

  24. L. Yang et al., J. Phys. D: Appl. Phys. 44, 155404 (2011).

    Article  ADS  Google Scholar 

  25. S. Bai, T. Guo, Y. Zhao, R. Luo, D. Li, A. Chen and C. C. Liu, J. Mater. Chem. A 1, 11335 (2013).

    Article  Google Scholar 

  26. X. Q. Wei, B.Y. Man, M. Liu, C. S. Xue, H. Z. Zhuang and C. Yang, Physica B: Condensed Matter 388, 145 (2007).

    Article  ADS  Google Scholar 

  27. C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta and H. K. Choa, J. Appl. Phys. 105, 013502 (2009).

    Article  ADS  Google Scholar 

  28. A. Janotti and C. G. Van de Walle, Rep. Prog. Phys. 72, 26501 (2009).

    Article  ADS  Google Scholar 

  29. M. Zhong, G. Shan, Y. Li, G. Wang and Y. Liu, Mater. Chem. Phys. 106, 305 (2007).

    Article  Google Scholar 

  30. X. G. Xiang, L. J. Ming, W. J. Huai, L. Zhang, L. Q. Hua, X. Y. Ming, Y. G. Tian, Y. H. Feng and H. M. Liang, Chinese Sci. Bull January 56, 1 (2011).

    Article  ADS  Google Scholar 

  31. G. Schlichthorl, S. Huang, J. Sprague and A. Frank, J. Phys. Chem. B 101, 8141 (1997).

    Article  Google Scholar 

  32. Q. Wang, J. Moser and M. Graltzel, J. Phys. Chem. B 109, 14945 (2005).

    Article  Google Scholar 

  33. T. Hoshikawa, T. Ikebe, R. Kikuchi and K. Eguchi, Electrochimica Acta 51, 5286 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Kook Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsege, E.L., Vu, H.H.T., Atabaev, T.S. et al. Effect of Er3+ and Yb3+ co-doping on the performance of a ZnO-based DSSC. Journal of the Korean Physical Society 68, 1381–1389 (2016). https://doi.org/10.3938/jkps.68.1381

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.1381

Keywords

Navigation