Skip to main content
Log in

Simulation by using the lattice Boltzmann method of microscopic particle motion induced by artificial cilia

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this paper, we present the results obtained from the simulation of particle motion induced by the fluid flow driven by an array of beating artificial cilia inside a micro-channel. A worm-like-chain model is used to simulate the elastic cilia, and the lattice Boltzmann equation is used to compute the fluid flow. We employ a harmonic force at the extreme tip of each cilium to actuate it. Our simulation methods are first validated by applying them to the motion of a single cilium and a freely falling sphere. After validation, we simulate the fluid flow generated by an array of beating cilia and find that a maximum flow rate is achieved at an optimum sperm number. Next, we simulate the motion of a neutrally buoyant spherical particle at this optimum sperm number by tracking the particle motion with a smoothed profile method. We address the effect of the following parameters on the particle velocity: the gap between cilia and particle, the particle size, the cilia density, and the presence of an array of intermediate particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Khaderi, J. M. J. den Toonder and P. R. Onck, J. Fluid Mech. 688, 44 (2011).

    Article  ADS  Google Scholar 

  2. M. Vilfana, A. Potocvnika, B. Kavcvicvb, N. Ostermana, I. Poberajc, A. Vilfana and D. Babic, Proc. Natl. Acad. Sci. U.S.A. 107, 1844 (2009).

    Article  ADS  Google Scholar 

  3. B. A. Evans, A. R. Shields, R. L. Carroll, S. Washburn, M. R. Falvo and R. Superfine, Nano Lett. 7, 1428 (2007).

    Article  ADS  Google Scholar 

  4. C. L. van Oosten, C.W. M. Bastiaansen and D. J. Broer, Nat. Mater. 8, 677 (2009).

    Article  ADS  Google Scholar 

  5. B. Pokroy, A. K. Epstein, M. C. M. Persson-Gulda and J. Aizenberg, Adv. Mat. 21, 463 (2009).

    Article  Google Scholar 

  6. Y. W. Kim and R. R. Netz, Phys. Rev. Lett. 96, 158101 (2006).

    Article  ADS  Google Scholar 

  7. V. V. Khatavkar, P. D. Anderson, J. M. J. den Toonder and H. E. H. Meijer, Phys. Fluids 19, 083605 (2007).

    Article  ADS  Google Scholar 

  8. E. M. Gauger, M. Downton and H. Stark, Eur. Phys. J. E 28, 231 (2009).

    Article  Google Scholar 

  9. A. Alexeev, J. M. Yeomans and A. C. Balazs, Langmuir 24, 12102 (2008).

    Article  Google Scholar 

  10. R. Ghosh, G. A. Buxton, O. B. Usta, A. C. Balazs and A. Alexeev, Langmuir 26, 2963 (2010).

    Article  Google Scholar 

  11. A. Bhattacharya, G. A. Buxton, O. B. Usta and A. C. Balazs, Langmuir 28, 3217 (2012).

    Article  Google Scholar 

  12. J. D. Weeks, D. Chandler and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971).

    Article  ADS  Google Scholar 

  13. S. Alapati, D. V. Fernandes and Y. K. Suh, Mol. Simul. 37, 466 (2011).

    Article  Google Scholar 

  14. R. Benzi, S. Succi and M. Vergassola, Phys. Rep. 222, 145 (1992).

    Article  ADS  Google Scholar 

  15. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, Oxford, UK, 2001).

    MATH  Google Scholar 

  16. S. Alapati, D. V. Fernandes and Y. K. Suh, J. Chem. Phys. 135, 055103 (2011).

    Article  ADS  Google Scholar 

  17. S. Alapati, S. Kang and Y. K. Suh, J. Mech. Sci. Technol. 23, 2492 (2009).

    Article  Google Scholar 

  18. S. Jafari, R. Yamamoto and M. Rahnama, Phys. Rev. E 83, 026702 (2011).

    Article  ADS  Google Scholar 

  19. S. Alapati, W. S. Che and Y. K. Suh, Materials 6, 3989 (2013).

    Article  ADS  Google Scholar 

  20. S. Alapati, W. S. Che and Y. K. Suh, Adv. Mech. Eng. 7, 794198 (2015).

    Article  Google Scholar 

  21. A. ten Cate, C. H. Nieuwstad, J. J. Derksen and H. E. A. Van den Akker, Phys. Fluids 14, 4012 (2002).

    Article  ADS  Google Scholar 

  22. I. Tosun, Modelling in Transport Phenomena: A Conceptual Approach (Elsevier Science, United States, 2002).

    Google Scholar 

  23. G. D’Avino, M. A. Hulsen, F. Snijkers, J. Vermant, F. Greco and P. L. Maffettone, J. Rheol. 52, 1331 (2008).

    Article  ADS  Google Scholar 

  24. G. D’Avino, G. Cicale, M. A. Hulsen, F. Greco and P. L. Maffettone, J. Non-Newtonian Fluid Mech. 157, 101 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Kweon Suh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alapati, S., Che, W.S., Mannoor, M. et al. Simulation by using the lattice Boltzmann method of microscopic particle motion induced by artificial cilia. Journal of the Korean Physical Society 68, 1307–1316 (2016). https://doi.org/10.3938/jkps.68.1307

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.1307

Keywords

Navigation