Skip to main content
Log in

Numerical analysis on the effect of angle of attack on evaluating radio-frequency blackout in atmospheric reentry

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A three-dimensional numerical simulation model that considers the effect of the angle of attack was developed to evaluate plasma flows around reentry vehicles. In this simulation model, thermochemical nonequilibrium of flowfields is considered by using a four-temperature model for high-accuracy simulations. Numerical simulations were performed for the orbital reentry experiment of the Japan Aerospace Exploration Agency, and the results were compared with experimental data to validate the simulation model. A comparison of measured and predicted results showed good agreement. Moreover, to evaluate the effect of the angle of attack, we performed numerical simulations around the Atmospheric Reentry Demonstrator of the European Space Agency by using an axisymmetric model and a three-dimensional model. Although there were no differences in the flowfields in the shock layer between the results of the axisymmetric and the three-dimensional models, the formation of the electron number density, which is an important parameter in evaluating radio-frequency blackout, was greatly changed in the wake region when a non-zero angle of attack was considered. Additionally, the number of altitudes at which radio-frequency blackout was predicted in the numerical simulations declined when using the three-dimensional model for considering the angle of attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kim, M. Keidar and I. D. Boyd, J. Spacecraft Rockets 45, 1223 (2008).

    Article  ADS  Google Scholar 

  2. C. Thoma, D. V. Rose, C. L. Miller, R. E. Clark and T. P. Hughes, J. Appl. Phys. 106, 043301 (2009).

    Article  ADS  Google Scholar 

  3. Y. Takahashi, K. Yamada and T. Abe, J. Spacecraft Rockets 51, 430 (2014).

    Article  ADS  Google Scholar 

  4. J. D. Huba, NRL Plasma Formulary (Naval Research Lab., Washington, D.C., 2000).

    Google Scholar 

  5. Y. Takahashi, K. Yamada and T. Abe, J. Spacecraft Rockets 51, 1954 (2014).

    Article  ADS  Google Scholar 

  6. K. S. Kunz and R. J. Luebbers, Finite Difference Time Domain Method for Electromagentics (CRC Press, Boca Raton, 1993).

    Google Scholar 

  7. N. Kawano, H. Kihara and K. Abe, Proceedings of the 5th Asian Joint Workshop on Thermophysics and Fluid Science (Nagasaki, 2014).

    Google Scholar 

  8. Y. Wada, Y. Watanabe, T. Akimoto and H. Yasui, Special Publication of the National Aerospace Laboratory SP-24 (1994), p. 227.

    Google Scholar 

  9. Ph. Tran, J. C. Paulat and P. Boukhobza, NATO Rept. RTO-EN-AVT-130-10, 10-1 (2007).

  10. C. F. Curtiss and J. O. Hirschfelder, J. Chem. Phys. 17, 550 (1949).

    Article  ADS  Google Scholar 

  11. R. N. Gupta, J. M. Yos, R. A. Thompson and K. P. Lee, NASA RP-1232 (1990).

    Google Scholar 

  12. M. Fertig, A. Dohr and H. H. Frühauf, AIAA Paper 1998-2937 (1998).

    Google Scholar 

  13. M. Fertig, A. Dohr and H. H. Frühauf, J. Thermophys. Heat Trans. 15, 148 (2001).

    Article  Google Scholar 

  14. C. Park, J. Thermophys. Heat Trans. 7, 385 (1993).

    Article  ADS  Google Scholar 

  15. C. Park, R. L. Jaffe and H. Partridge, J. Thermophys. Heat Trans. 15, 76 (2001).

    Article  Google Scholar 

  16. C. Park, Nonequilibrium Hypersonic Aerothermodynamics (Wiley, New York, 1990), p. 35.

    Google Scholar 

  17. C. Park, J. Thermophys. Heat Trans. 18, 527 (2004).

    Article  Google Scholar 

  18. J. G. Parker, Phys. Fluids 2, 449 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  19. R. C. Millikan and D. R. White, J. Chem. Phys. 39, 3209 (1963).

    Article  ADS  Google Scholar 

  20. C. Park, AIAA Paper 1984-1730 (1984).

    Google Scholar 

  21. J. P. Appleton and K. N. C. Bray, J. Fluid Mechanics. 20, 659 (1964).

    Article  ADS  Google Scholar 

  22. M. Mitchner and Jr. C. H. Kruger, Partially Ionized Gases (Wiley, New York, 1973).

    Google Scholar 

  23. M. Nishida and M. Matsumoto, Zeitschrift für Naturforcuhung 52, 358 (1997).

    ADS  Google Scholar 

  24. S. S. Lazdinis and S. L. Petrie, Phys. Fluid 17, 1539 (1974).

    Article  ADS  Google Scholar 

  25. J. H. Lee, J. Thermophys. Heat Trans. 7, 399 (1993).

    Article  ADS  Google Scholar 

  26. P. A. Gnoffo, R. N. Gupta and J. L. Shinn, NASA TP-2867, 1989.

    Google Scholar 

  27. K. Kitamura and E. Shima, J. Comput. Phys. 245, 62 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  28. Y. Wada and M. S. Liou, AIAA Paper 94-0083 (1994).

    Google Scholar 

  29. T. R. A. Bussing and E. M. Murman, AIAA J. 26, 1070 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  30. W. L. Jones and A. E. Cross, NASA TN D-6617, 1972.

    Google Scholar 

  31. R. N. Gupta, J. N. Moss and J. M. Price, AIAA Paper 96-1859 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minseok Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, M., Kihara, H., Abe, Ki. et al. Numerical analysis on the effect of angle of attack on evaluating radio-frequency blackout in atmospheric reentry. Journal of the Korean Physical Society 68, 1295–1306 (2016). https://doi.org/10.3938/jkps.68.1295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.1295

Keywords

Navigation