Skip to main content
Log in

Feasibility study of patient-specific quality assurance system for high-dose-rate brachytherapy in patients with cervical cancer

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This study was conducted for the purpose of establishing a quality-assurance (QA) system for brachytherapy that can ensure patient-specific QA by enhancing dosimetric accuracy for the patient’s therapy plan. To measure the point-absorbed dose and the 2D dose distribution for the patient’s therapy plan, we fabricated a solid phantom that allowed for the insertion of an applicator for patient-specific QA and used an ion chamber and a film as measuring devices. The patient treatment plan was exported to the QA dose-calculation software, which calculated the time weight of dwell position stored in the plan DICOM (Digital Imaging and Communications in Medicine) file to obtain an overall beam quality correction factor, and that correction was applied to the dose calculations. Experiments were conducted after importing the patient’s treatment planning source data for the fabricated phantom and inserting the applicator, ion chamber, and film into the phantom. On completion of dose delivery, the doses to the ion chamber and film were checked against the corresponding treatment plan to evaluate the dosimetric accuracy. For experimental purposes, five treatment plans were randomly selected. The beam quality correction factors for ovoid and tandem brachytherapy applicators were found to be 1.15 and 1.10 − 1.12, respectively. The beam quality correction factor in tandem fluctuated by approximately 2%, depending on the changes in the dwell position. The doses measured by using the ion chamber showed differences ranging from −2.4% to 0.6%, compared to the planned doses. As for the film, the passing rate was 90% or higher when assessed using a gamma value of the local dose difference of 3% and a distance to agreement of 3 mm. The results show that the self-fabricated phantom was suitable for QA in clinical settings. The proposed patient-specific QA for the treatment planning is expected to contribute to reduce dosimetric errors in brachytherapy and, thus, to enhancing treatment accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Onal, O. C. Guler Y. Dolek and G. Erbay, Int. J. Gynecol. Cancer 24, 346 (2014).

    Article  Google Scholar 

  2. I. L. Atahan, C. Onal, E. Ozyar, F. Yiliz, U. Selek and F. Kose, Int. J. Gynecol. Cancer 17, 833 (2007).

    Article  Google Scholar 

  3. P. J. Eifel, J. Moughan, B. Erickson, T. Iarocci, D. Grant and J. Owen. Int. J. Radiat. Oncol. Biol. Phys. 60, 1144 (2004).

    Article  Google Scholar 

  4. H. J. Lee, Y. S. Kim and S. S. Shin, Tumori 98, 615 (2012).

    Google Scholar 

  5. B. Segedin, J. Gugic and P. Petric, Radiol. Oncol. 47, 154 (2013).

    Article  Google Scholar 

  6. W. Irvin, L. Rice, P. Taylor, W. Andersen and B. Schneider, Gynecologic Oncology. 90, 113 (2003).

    Article  Google Scholar 

  7. E. A. Barnes, G. Thomas and I. Ackerman, Int. J. Gynecol. Cancer 17, 821 (2007).

    Article  Google Scholar 

  8. A. N. Viswanathan and B.A. Erickson, Int. J. Radiat. Oncol. Biol. Phys. 76, 104 (2010).

    Article  Google Scholar 

  9. S. Nag, H. Cardenes and S. Chang, Int. J. Radiat. Oncol. Biol. Phys. 60, 1160 (2004).

    Article  Google Scholar 

  10. C. Haie-Meder, R. Potter and E. Van Limbergen, Radiother. Oncol. 74, 235 (2005).

    Article  Google Scholar 

  11. R. Potter, C. Haie-Meder and E. Van Limbergen, Radiother. Oncol. 78, 67 (2006).

    Article  Google Scholar 

  12. T. P. Hellebust, C. Kirisits and D. Berger, Radiother. Oncol. 96, 153 (2010).

    Article  Google Scholar 

  13. A. N. Viswanathan, J. Dimopoulos and C. Kirisits, Int. J. Radiat. Oncol. Biol. Phys. 68, 491 (2007).

    Article  Google Scholar 

  14. J. Anderson, Y. Huang and Y. Kim, J. Contemp. Brachytherapy 4, 241 (2012).

    Article  Google Scholar 

  15. J. W. Anderson, J. Xia and R. T. Flynn, J. Contemp. Brachytherapy 5, 101 (2013).

    Article  Google Scholar 

  16. C. Austerlitz and C. A. Campos, Med. Phys. 40, 112103 (2013).

    Article  Google Scholar 

  17. A. K. Bansal, M. K. Semwal and D. Arora, Phys. Med. 29, 368 (2013).

    Article  Google Scholar 

  18. R. Sharma and P. A. Jursinic, Med. Phys. 40, 071730 (2013).

    Article  Google Scholar 

  19. L. A. DeWerd, P. Jursinic and R. Kitchen, Med. Phys. 22, 435 (1995).

    Article  Google Scholar 

  20. P. Kohr and F. A. Siebert, Phys. Med. Biol. 52, N387 (2007).

    Article  ADS  Google Scholar 

  21. R. Ochoa, F. Gomez and I. H Ferreira, Radiother. Oncol. 82, 222 (2007).

    Article  Google Scholar 

  22. H. D. Kubo, G. P. Glasgow and T. D. Pethel, Med. Phys. 25, 375 (1998).

    Article  Google Scholar 

  23. S. Nag, B. Erickson and B. Thomadson B, Int. J. Radiation Oncology Biol. Phys. 48, 201 (2000).

    Article  Google Scholar 

  24. M. J. Rivard, B. M. Coursey and L. A. DeWerd, Med. Phys. 31, 633 (2004).

    Article  Google Scholar 

  25. D. Sarrut, M. Bardies and N. Boussion, Med. Phys. 41, 064301 (2014).

    Article  Google Scholar 

  26. M. Zhang, W. Zou and T. Chen, Phys. Med. Biol. 59, 455 (2014).

    Article  Google Scholar 

  27. J. Schindel, W. Zhang and S. K. Bhatia, J. Contemp. Brachytherapy 5, 250 (2013).

    Article  Google Scholar 

  28. F. Araki, T. Kouno and T. Ohno, Med. Phys. 40, 092101 (2013).

    Article  Google Scholar 

  29. M. D. Evans, S. Devic and E. B. Podgorsak, Med. Dosim. 32, 13 (2007).

    Article  Google Scholar 

  30. A. Sarfehnia, I. Kawrakow and J. Seuntjens, Med. Phys. 37, 1924 (2010).

    Article  Google Scholar 

  31. G. M. Mora, A. Maio and D. W. O. Rogers, Med. Phys. 26, 2494 (1999).

    Article  Google Scholar 

  32. A. Angelopoulos, P. Baras and L. Sakelliou, Med. Phys. 27, 2521 (2000).

    Article  Google Scholar 

  33. G. M. Daskalov, E. Löffler and J. F. Williamson, Med. Phys. 25, 2200 (1998).

    Article  Google Scholar 

  34. S.-T. Chiu-Tsao, T. L. Duckworth and N. S. Patel. Med. Phys. 31, 201 (2004).

    Article  Google Scholar 

  35. D. A. Low, W. B. Harms and S. Mutic, Med. Phys. 25, 656 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myonggeun Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B., Ahn, S.H., Kim, H. et al. Feasibility study of patient-specific quality assurance system for high-dose-rate brachytherapy in patients with cervical cancer. Journal of the Korean Physical Society 68, 1029–1036 (2016). https://doi.org/10.3938/jkps.68.1029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.1029

Keywords

Navigation