Skip to main content
Log in

Modification of electrical and piezoelectric properties of ZnO nanorods based on arsenic incorporation via low temperature spin-on-dopant method

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report on the control of the electrical and the piezoelectric properties of ZnO nanorods (NRs) by incorporation of arsenic (As) elements via a low-temperature processed spin-on-dopant (SOD) method. The structural investigations for the SOD-treated ZnO NRs at different temperatures show a negligible change in morphology at temperatures up to 550 °C and melting of the ZnO NRs at 600 °C. Low-temperature photoluminescence (PL) spectra show gradual development of acceptor-related emission peaks with increasing SOD treatment temperature from 450 to 550 °C, which indicates the successful incorporation of As atoms into the ZnO NRs. An As Zn -2V Zn shallow acceptor model is suggested by considering the formation energy of the interstitial point-defect complex for the modification of the electrical properties of ZnO NRs. A ZnO NR/n-Si heterojunction showed better rectifying behavior with increasing SOD treatment temperature, indicating better incorporation of As-dopants at higher SOD treatment temperatures. A piezoelectric nanogenerator was fabricated as a device application of the electrical-property-modified ZnO NRs. The nanogenerator showed enhanced piezoelectric output potential after doping due to the elimination of the screening effect by free charge carriers in the ZnO NRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Zhuang, Q. Peng and Y. Li, Chem. Soc. Rev. 40, 5492 (2011).

    Article  Google Scholar 

  2. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S-J. Cho and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).

    Article  ADS  Google Scholar 

  3. Z. L. Wang, J. Phys.: Conden. Matt. 16, R829 (2004).

    ADS  Google Scholar 

  4. D. C. Look, Mater. Sci. Eng. B 80, 383 (2001).

    Article  Google Scholar 

  5. D. K. Hwang, M. S. Oh, J. H. Lim and S. J. Park, J. Phys. D 40, R387 (2007).

    Article  ADS  Google Scholar 

  6. J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park and S. J. Park, Adv. Mater. 18, 2720 (2006).

    Article  Google Scholar 

  7. Z. L. Wang, Nano Today 5, 540 (2010).

    Article  Google Scholar 

  8. S. Kwon, S. Bang, S. Lee, S. Jeon, W. Jeong, H. Kim, S. C. Gong, H. J. Chang, H. Park and H. Jeon, Semicond. Sci. Technol. 24, 035015 (2009).

    Article  ADS  Google Scholar 

  9. S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren and J. Liu, Nature Nanotech. 6, 506 (2011).

    Article  ADS  Google Scholar 

  10. Z. L. Wang and J. H. Song, Science 312, 242 (2006).

    Article  ADS  Google Scholar 

  11. W-J. Lee, J. Kang and K. J. Chang, J. Kor. Phys. Soc. 53, 196 (2008).

    Google Scholar 

  12. J. Y. Zhang, P. J. Li, H. Sun, X. Shen, T. S. Deng, K. T. Zhu, Q. F. Zhang and J. L. Wu, Appl. Phys. Lett. 93, 021116 (2008).

    Article  ADS  Google Scholar 

  13. B. Xiang, P. W. Wang, X. Z. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, D. P. Yu and D. L. Wang, Nano Lett. 7, 323 (2007).

    Article  ADS  Google Scholar 

  14. J. S. Lee, S. N. Cha, J. M. Kim, H. W. Nam, S. H. Lee, W. B. Ko, K. L. Wang, J. G. Park and J. P. Hong, Adv. Mater. 23, 4183 (2011).

    Article  Google Scholar 

  15. B. Bazer-Bachi, E. Fourmond, P. Papet, L. Bounaas, O. Nichiporuk, N. Le Quang and M. Lemiti, Solar Energy Materials and Solar Cells 105, 137 (2012).

    Article  Google Scholar 

  16. U. Gangopadhyay, K. Kim, S. K. Dhungel and J. Yi, J. Kor. Phys. Soc. 47, 1035 (2005).

    Google Scholar 

  17. J. I. Sohn, Y-I. Jung, S-H. Baek, S. Cha, J. E. Jang, C-H. Cho, J. H. Kim, J. M. Kim and I-K. Park, Nanoscale 6, 2046 (2014).

    Article  ADS  Google Scholar 

  18. Y-I. Jung, B-Y. Noh, Y-S. Lee, S-H. Baek, J. H. Kim and I-K. Park, Nanoscale Res. Lett. 7, 1 (2012).

    Article  ADS  Google Scholar 

  19. X. Su, Z, Zhang and M. Zhu, Appl. Phys. Lett. 88, 061913 (2006).

    Article  ADS  Google Scholar 

  20. J. W. M. Frenken and J. F. van der Veen, Phys. Rev. Lett. 54, 134 (1985).

    Article  ADS  Google Scholar 

  21. F. Decremps, J. Pellicer-Porres, A. M. Saitta, J.-C. Cheervin and A. Polian, Phys. Rev. B 65, 092101 (2002).

    Article  ADS  Google Scholar 

  22. D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look and Y. S. Park, Appl. Phys. Lett. 86, 151917 (2005).

    Article  ADS  Google Scholar 

  23. S. Limpijumnong, S. B. Zhang. S. H. Wei and C. H. Park, Phys. Rev. Lett. 92, 155504 (2005).

    Article  ADS  Google Scholar 

  24. M. Dutta and D. Basak, Appl. Phys. Lett. 92, 212112 (2008).

    Article  ADS  Google Scholar 

  25. R. L. Anderson, Solid-State Electron. 5, 341 (1962).

    Article  ADS  Google Scholar 

  26. J. A. Aranovich, D. G. Golmayo, A. L. Fahrenbruch and R. H. Bube, J. Appl. Phys. 51, 4260 (1980).

    Article  ADS  Google Scholar 

  27. S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd edition (John Wiley & Sons, Inc., New York, 2001), Chap. 13.

    Google Scholar 

  28. S. N. Cha, J. S. Seo, S. M. Kim, H. J. Kim, Y. J. Park, S. W. Kim and J. M. Kim, Adv. Mater. 22, 4726 (2010).

    Article  Google Scholar 

  29. J. I. Sohn et al., Energy Environ. Sci. 6, 97 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Kyu Park.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohn, J.I., Cha, S.N., Kim, J.M. et al. Modification of electrical and piezoelectric properties of ZnO nanorods based on arsenic incorporation via low temperature spin-on-dopant method. Journal of the Korean Physical Society 67, 930–935 (2015). https://doi.org/10.3938/jkps.67.930

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.930

Keywords

Navigation