Skip to main content
Log in

Magnetostatic spin wave in a very thin CoFeB film grown on an amorphous FeZr buffer layer

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The transmission of a magnetostatic spin wave in a very thin CoFeB film (2.3 nm) grown on an amorphous paramagnetic FeZr layer was demonstrated for the first time by using an antenna method with coplanar waveguides. The attenuation length, determined by using the difference in intensities due to a change in the distance between the antennas, was estimated to be 0.7 µm. We discuss why we are able to observe spin-wave propagation in such a thin magnetic layer, taking the low damping constant (α = 0.0027) of the CoFeB films grown on the amorphous FeZr layer and the estimated large group velocity in the CoFeB films into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Stancil, Theory of Magnetostatic Waves (Springer, New York, 1993).

    Book  Google Scholar 

  2. L. K. Brundle and N. J. Freedman, Electron. Lett. 4, 132 (1968).

    Article  Google Scholar 

  3. W. Ishak, Proc. IEEE 76, 171 (1988).

    Article  ADS  Google Scholar 

  4. M. Bailleul, D. Olligs, C. Fermon and S. O. Demokritov, Europhys. Lett. 56, 741 (2001).

    Article  ADS  Google Scholar 

  5. K. Yamanoi, S. Yakata, T. Kimura and T. Manago, Jpn. J. Appl. Phys. 52, 083001 (2013).

    Article  ADS  Google Scholar 

  6. V. V. Kruglyak, S. O. Demokritov and D. Grundler, J. Phys. D Appl. Phys. 43, 264001 (2010).

    Article  ADS  Google Scholar 

  7. A. A. Serga, A. V. Chumak and B. Hillebrands, J. Phys. D: Appl. Phys. 43, 264002 (2010).

    Article  ADS  Google Scholar 

  8. R. Shindou, J. Ohe, R. Matsumoto, S. Murakami and E. Saitoh, Phys. Rev. B 87, 174402 (2013).

    Article  ADS  Google Scholar 

  9. R. Shindou, R. Matsumoto, S. Murakami and J. Ohe, Phys. Rev. B 87, 174427 (2013).

    Article  ADS  Google Scholar 

  10. V. Vlaminck and M. Bailleul, Science 322, 410 (2008).

    Article  ADS  Google Scholar 

  11. Y. Kajiwara et al., Nature 464, 262 (2010).

    Article  ADS  Google Scholar 

  12. K. Nawaoka, Y. Shiota, S. Miwa, H. Tomita, E. Tamura, N. Mizuochi, T. Shinjo and Y. Suzuki, J. Appl. Phys. 117, 17A905 (2015).

    Article  Google Scholar 

  13. K. Nawaoka, S. Miwa, Y. Shiota, N. Mizuochi and Y. Suzuki, Appl. Phys. Exp. 8, 063004 (2015).

    Article  ADS  Google Scholar 

  14. X. Zhang, T. Liu, M. E. Flatté and H. X. Tang, Phys. Rev. Lett. 113, 037202 (2014).

    Article  ADS  Google Scholar 

  15. D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki and K. Ando, Appl. Phys. Lett. 86, 092502 (2005).

    Article  ADS  Google Scholar 

  16. S. Yakata, H. Kubota, Y. Suzuki, K. Yakushiji, A. Fukushima, S. Yuasa and K. Ando, J. Appl. Phys. 105, 07D131 (2009).

    Article  Google Scholar 

  17. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura and H. Ohno, Nat. Mater. 9, 721 (2010).

    Article  ADS  Google Scholar 

  18. D. S. Kim et al., J. Magn. Magn. Mater. 374, 350 (2015).

    Article  ADS  Google Scholar 

  19. I. M. Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel and P. Gambardella, Nat. Mater. 9, 230 (2010).

    ADS  Google Scholar 

  20. I. M. Miron et al., Nat. Mater. 10, 419 (2011).

    Article  ADS  Google Scholar 

  21. L. Liu, O. J. Lee, T. J. Gudmundsen, D. C. Ralph and R. A. Buhrman, Phys. Rev. Lett. 109, 096602 (2012).

    Article  ADS  Google Scholar 

  22. L. Liu, C. F. Pai, Y. Li, H. W. Tseng, D. C. Ralph and R. A. Buhrman, Science 336, 555 (2012).

    Article  ADS  Google Scholar 

  23. M. Jamali, K. Narayanapillai, X. Qiu, Li M. Loong, A. Manchon and H. Yang, Phys. Rev. Lett. 111, 246602 (2013).

    Article  ADS  Google Scholar 

  24. H-R. Lee et al., Sci. Rep. 4, 6548 (2014).

    Article  ADS  Google Scholar 

  25. K. Rhie, D. G. Naugle, B-H. O, J. T. Markert, A. H. Morrish and X. Z. Zhou, J. Phys. Condens. Matter 7, 3315 (1995).

    Article  ADS  Google Scholar 

  26. K. Rhie and D. G. Naugle, IEEE Trans. Magn. 32, 5 (1996).

    Article  Google Scholar 

  27. H. Imamura, P. Bruno and Y. Utsumi, Phys. Rev. B 69, 121303 (2004).

    Article  ADS  Google Scholar 

  28. H. Yu, R. Huber, T. Schwarze, F. Brandl, T. Rapp, P. Berberich, G. Duerr and D. Grundler, Appl. Phys. Lett. 100, 262412 (2012).

    Article  ADS  Google Scholar 

  29. D. D. Stancil and A. Prabhakar, Spin Waves (Springer, New York, 2009), p. 162.

    MATH  Google Scholar 

  30. J. H. Moon, S. M. Seo, K-J. Lee, K-W. Kim, J. Ryu, H-W. Lee, R. D. McMichael and M. D. Stiles, Phys. Rev. B 88, 184404 (2013).

    Article  ADS  Google Scholar 

  31. K. Di, V. L. Zhang, H. S. Lim, S. C. Ng, M. H. Kuok, J. Yu, J. Yoon, X. Qiu and H. Yang, Phys. Rev. Lett. 114, 047201 (2015).

    Article  ADS  Google Scholar 

  32. V. E. Demidov, M. P. Kostylev, K. Rott, P. Krzysteczko, G. Reiss and S. O. Demokritov, Appl. Phys. Lett. 95, 112509 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kungwon Rhie.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Nawaoka, K., Miwa, S. et al. Magnetostatic spin wave in a very thin CoFeB film grown on an amorphous FeZr buffer layer. Journal of the Korean Physical Society 67, 906–910 (2015). https://doi.org/10.3938/jkps.67.906

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.906

Keywords

Navigation