Skip to main content
Log in

Theoretical investigations of electronic structures, magnetic properties and half-metallicity in Heusler alloys Zr2VZ (Z = Al, Ga, In)

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The electronic structures, magnetic properties and half-metallicity of Zr2VZ (Z = Al, Ga, In) bulk materials were investigated through first-principles calculations. Band structure calculations showed that Zr2VZ (Z = Al, Ga, In) alloys with an AlCu2Mn-type structure were conventional ferrimagnents. However, Zr2VZ (Z = Al, Ga, In) alloys with a CuHg2Ti-type structure were predicted to be half-metallic ferrimagnets that were quite robust against hydrostatic strain and tetragonal deformation. The total magnetic moment of the Zr2VZ (Z = Al, Ga, In) alloys with a CuHg2Ti-type structure was 2 µB per formula unit and followed the conventional Slater-Pauling rule: M t = 18 - Z t . (M t is the total magnetic moment per unit cell and Z t is the valence concentration) Furthermore, the origin of the band gap in the Zr2VZ (Z = Al, Ga, In) alloys was also well studied. All of these results indicate that these alloys, when they are successfully prepared, are good candidates for practical applications in spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. de Groot, F. M. Mueller, P. G. van Engen and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).

    Article  ADS  Google Scholar 

  2. G. A. Prinz, Science 282, 1660 (1998).

    Article  Google Scholar 

  3. I. S. Osborne, Science 294, 1483 (2001).

    Article  Google Scholar 

  4. D. D. Awschalom and J. M. Kikkawa, Phys. Today 52, 33 (1999).

    Article  Google Scholar 

  5. W. E. Pickett and J. S. Moodera, Phys. Today 54, 39 (2001).

    Article  ADS  Google Scholar 

  6. H. Z. Luo, G. D. Liu, F. B. Meng, L. L. Wang, E. K. Liu, G. H. Wu, X. X. Zhu and C. B. Jiang, Comput. Mater. Sci. 50, 3119 (2011).

    Article  Google Scholar 

  7. S. T. Li, Z. Ren, X. H. Zhang and C. M. Cao, Physica B 404, 1965 (2009).

    Article  ADS  Google Scholar 

  8. Z. Q. Feng, H. Z. Luo, Y. X. Wang, Y. X. Li, W. Zhu, G. H. Wu and F. B. Meng, Phys. Status Solid A 207, 1481 (2010).

    Article  ADS  Google Scholar 

  9. X. P. Wei, J. B. Deng, S. B. Chu, G. Y. Mao, L. B. Hu, M. K. Yang and X. R. Hu, Comput. Mater. Sci. 50, 1175 (2011).

    Article  Google Scholar 

  10. X. P. Wei, X. R. Hu, G. Y. Mao, S. B. Chu, T. Lei, L. B. Hu and J. B. Deng, J. Magn. Magn. Mater. 322, 3204 (2010).

    Article  ADS  Google Scholar 

  11. A. Birsan, Cur. Appl. Phys. 14, 1434 (2014).

    Article  ADS  Google Scholar 

  12. A. Birsan and V. Kuncser, J. Magn. Magn. Mater. 388, 1 (2015).

    Article  ADS  Google Scholar 

  13. P. L. Yan, J. M Zhang and K. W. Xu, J. Magn. Magn. Mater. 391, 43 (2015).

    Article  ADS  Google Scholar 

  14. X. T. Wang, J. W. Lu, H. Rozale, X. F. Liu, Y. T. Cui and G. D. Liu, arXiv preprint [arXiv:1505.00203] (2015).

  15. S. Berri, M. Ibrir, D. Maouche and M. Attallah, J. Magn. Magn. Mater. 371, 106 (2014).

    Article  ADS  Google Scholar 

  16. H.-H. Xie, Q. Gao, L. Li, G. Lei, G.-Y. Mao and J.-B. Deng, J. Magn. Magn. Mater. 103, 52 (2015).

    Google Scholar 

  17. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoolous, Rev. Mod. Phys. 64, 1065 (1992).

    Article  ADS  Google Scholar 

  18. M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, J. Phys.: Conden. Matt. 14, 2717 (2002).

    ADS  Google Scholar 

  19. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  ADS  Google Scholar 

  20. J. P. Perdew, J. A. Chevary, S. H. Vosko, A. Jackson, M. R. Pederson and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

    Article  ADS  Google Scholar 

  21. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  22. X. T. Wang, X. F. Dai, L. Y. Wang, X. F. Liu, W. H. Wang, G. H. Wu, C. C. Tang and G. D. Liu, J. Magn. Magn. Mater. 378, 16 (2015).

    Article  ADS  Google Scholar 

  23. S. Galehgirian and F. Ahmadian, Solid State Commun. 202, 52 (2015).

    Article  ADS  Google Scholar 

  24. S. Skaftouros, K. Ozdogan, E. Sasioglu and I. Galanakis, Phys. Rev. B 87, 024420 (2013).

    Article  ADS  Google Scholar 

  25. A. Birsan and P. Palade, Intermetallics 36, 86 (2013).

    Article  Google Scholar 

  26. A. Birsan, J. Alloys Compd. 598, 230 (2014).

    Article  Google Scholar 

  27. Y. C. Gao, Y. Zhang and X. T. Wang, J. Korean Phys. Soc. 66, 959 (2015).

    Article  ADS  Google Scholar 

  28. L. Zhang, L. Y. Wang, J. J. Lu, X. T. Wang and L. Wang, J. Korean Phy. Soc. 65, 2058 (2014).

    Article  ADS  Google Scholar 

  29. I. Galanakis, Ph. Mavropoulos and P. H. Dederichs, J. Phys. D: Appl. Phys. 39, 765 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. T. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y.C., Wang, X.T., Rozale, H. et al. Theoretical investigations of electronic structures, magnetic properties and half-metallicity in Heusler alloys Zr2VZ (Z = Al, Ga, In). Journal of the Korean Physical Society 67, 881–888 (2015). https://doi.org/10.3938/jkps.67.881

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.881

Keywords

Navigation