Skip to main content
Log in

Probing the rupture of a Ag atomic junction in a Ag-Au mixed electrode

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We probed that the atomic junction in Ag part ruptures during stretching of atomic sized contacts of Ag-Au mixed electrodes, resulting in Ag-Ag electrodes through a scanning tunneling microscope breaking junction (STM-BJ) technique. We observed that the conductance and tunneling decay constant for a series of amine-terminated oligophenyl molecular junctions are essentially the same for the Ag-Au mixed and the Ag-Ag electrodes. We also found the molecular plateau length and the evolution patterns with the Ag-Au mixed electrodes are similar to those with Ag-Ag electrodes rather than the Au-Au electrodes in the molecular junction elongation. This result is attributed to the smaller binding energy of Ag atoms compared to that of Au atoms, so the Ag junction part is more easily broken than that of Au part in stretching of Ag-Au mixed electrodes. Furthermore, we successfully observed that the rupture force of the atomic junction for the Ag-Au mixed electrodes was identical to that for the Ag-Ag electrodes and smaller than that for the Au-Au electrodes. This study may advance the understanding of the electrical and the mechanical properties in molecular devices with Ag and Au electrodes in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Perrin, C. J. O. Verzijl, C. A. Martin, A. J. Shaikh, R. Eelkema, H. van EschJan, J. M. van Ruitenbeek, J. M. Thijssen, H. S. J. van der Zant and D. Dulic, Nat. Nanotechnol. 8, 282 (2013).

    Article  ADS  Google Scholar 

  2. J. Reichert, R. Ochs, D. Beckmann, H. B. Weber, M. Mayor and H. v. Löhneysen, Phys. Rev. Lett. 88, 176804, (2002).

    Article  ADS  Google Scholar 

  3. M. L. Perrin, E. Burzuri and H. S. J. van der Zant, Chem. Soc. Rev. 44, 902, (2015).

    Article  Google Scholar 

  4. C. A. Martin, D. Ding, J. K. Sørensen, T. Bjørnholm, J. M. van Ruitenbeek and H. S. J. van der Zant, J. Am. Chem. Soc. 130, 13198, (2008).

    Article  Google Scholar 

  5. V. Fatemi, M. Kamenetska, J. B. Neaton and L. Venkataraman, Nano Lett. 11, 1988 (2011).

    Article  ADS  Google Scholar 

  6. M. Kamenetska, M. Koentopp, A. C. Whalley, Y. S. Park, M. L. Steigerwald, C. Nuckolls, M. S. Hybertsen and L. Venkataraman, Phys. Rev. Lett. 102, 126803 (2009).

    Article  ADS  Google Scholar 

  7. M. Kamenetska, S. Y. Quek, A. C. Whalley, M. L. Steigerwald, H. J. Choi, S. G. Louie, C. Nuckolls, M. S. Hybertsen, J. B. Neaton and L. Venkataraman, J. Am. Chem. Soc. 132, 6817 (2010).

    Article  Google Scholar 

  8. S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton and Venkataraman Latha, Nat. Nanotechnol. 4, 230 (2009).

    Article  ADS  Google Scholar 

  9. N. Jiang et al., Nano Lett. 12, 5061, (2012).

    Article  ADS  Google Scholar 

  10. S. J. Lee; J. M. Baik and M. Moskovits, Nano Lett. 8, 3244, (2008).

    Article  ADS  Google Scholar 

  11. E. M. van Schrojenstein Lantman, T. Deckert-Gaudig, A. J. G. Mank, V. Deckert and B. M. Weckhuysen, Nat. Nanotechnol. 7, 583 (2012).

    Article  ADS  Google Scholar 

  12. X. Liu, F. Wang, A. Niazov-Elkan, W. Guo and I. Willner, Nano Lett. 13, 309 (2013).

    Article  ADS  Google Scholar 

  13. B. Xu and N. J. Tao, Science 301, 1221 (2003).

    Article  ADS  Google Scholar 

  14. S. V. Aradhya, M. Frei, A. Halbritter and L. Venkataraman, ACS nano 7, 3706 (2013).

    Article  Google Scholar 

  15. T. Kim, Z.-F. Liu, C. Lee, J. B. Neaton and L. Venkataraman, Proc. Natl. Acad. Sci. U. S. A. 111, 10928 (2014).

    Article  ADS  Google Scholar 

  16. T. Kim, H. Vázquez, M. S. Hybertsen and L. Venkataraman, Nano Lett. 13, 3358 (2013).

    Article  ADS  Google Scholar 

  17. S. Y. Quek, L. Venkataraman, H. J. Choi, S. G. Louie, M. S. Hybertsen and J. B. Neaton, Nano Lett. 7, 3477 (2007).

    Article  ADS  Google Scholar 

  18. L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen and M. L. Steigerwald, Nature 442, 904 (2006).

    Article  ADS  Google Scholar 

  19. L. Venkataraman, J. E. Klare, I. W. Tam, C. Nuckolls, M. S. Hybertsen and M. L. Steigerwald, Nano Lett. 6, 458 (2006).

    Article  ADS  Google Scholar 

  20. V. B. Engelkes, J. M. Beebe and C. D. Frisbie, J. Am. Chem. Soc. 126, 14287 (2004).

    Article  Google Scholar 

  21. B. Kim, S. H. Choi, X. Y. Zhu and C. D. Frisbie, J. Am. Chem. Soc. 133, 19864 (2011).

    Article  Google Scholar 

  22. M. Frei, S. V. Aradhya, M. Koentopp, M. S. Hybertsen and L. Venkataraman, Nano Lett. 11, 1518 (2011).

    Article  ADS  Google Scholar 

  23. S. D. Napoli, A. Thiess, S. Blügel and Y. Mokrousov, J. Phys.: Condens. Matter 24, 135501 (2012).

    ADS  Google Scholar 

  24. D. Çakr and O. Gülseren, Phys. Rev. B 84, 085450 (2011).

    Article  ADS  Google Scholar 

  25. S. R. Bahn and K. W. Jacobsen, Phys. Rev. Lett. 87, 266101 (2001).

    Article  ADS  Google Scholar 

  26. F. J. Ribeiro and M. L. Cohen, Phys. Rev. B 68, 035423 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekyeong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T. Probing the rupture of a Ag atomic junction in a Ag-Au mixed electrode. Journal of the Korean Physical Society 67, 827–831 (2015). https://doi.org/10.3938/jkps.67.827

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.827

Keywords

Navigation