Skip to main content
Log in

Treatment plan comparison of linac step and shoot, tomotherapy, rapidarc, and proton therapy for prostate cancer by using the dosimetrical and the biological indices

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The purpose of this study was to use various dosimetrical indices to determine the best intensitymodulated radiation therapy (IMRT) modality - for treating patients with prostate cancer. Ten patients with prostate cancer were included in this study. IMRT plans were designed to include different modalities, including the linac step and shoot, tomotherapy, RapidArc, and proton systems. Various dosimetrical indices, like the prescription isodose to target volume (PITV) ratio, conformity index (CI), homogeneity index (HI), target coverage index (TCI), modified dose homogeneity index (MHI), conformation number (CN), critical organ scoring index (COSI), and quality factor (QF), were determined to compare the different treatment plans. Biological indices, such as the generalized equivalent uniform dose (gEUD) based the tumor control probability (TCP), and the normal tissue complication probability (NTCP), were also calculated and used to compare the treatment plans. The RapidArc plan attained better PTV coverage, as evidenced by its superior PITV, CI, TCI, MHI, and CN values. Regarding organ at risks (OARs), proton therapy exhibited superior dose sparing for the rectum and the bowel in low dose volumes, whereas the tomotherapy and RapidArc plans achieved better dose sparing in high dose volumes. The QF scores showed no significant difference among these plans (p = 0.701). The average TCPs for prostate tumors in the RapidArc, linac and proton plans were higher than the average TCP for Tomotherapy (98.79%, 98.76%, and 98.75% vs. 98.70%, respectively). Regarding the rectum NTCP, RapidArc showed the most favorable result (0.09%) whereas linac resulted in the best bladder NTCP (0.08%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Jemal, A. Thomas, T. Murray and M. Thun, CA Cancer J. Clin. 52, 23 (2002).

    Article  Google Scholar 

  2. Group I. M. R. T. C. W., Int. J. Radiat. Oncol. Biol. Phys. 51, 880 (2001).

    Article  Google Scholar 

  3. G. Luxton, S. L. Hancock and A. L. Boyer, Int. J. Radiat. Oncol. Biol. Phys. 59, 267 (2004).

    Article  Google Scholar 

  4. M. T. Vlachaki, T. N. Teslow, C. Amosson, N. W. Uy and S. Ahmad, Med. Dosim. 30, 69 (2005).

    Article  Google Scholar 

  5. G. De Meerleer et al., Int. J. Radiat. Oncol. Biol. Phys. 60, 777 (2004).

    Article  ADS  Google Scholar 

  6. A. Sethi, N. Mohideen, L. Leybovich and J. Mulhall, Int. J. Radiat. Oncol. Biol. Phys. 55, 970 (2003).

    Article  Google Scholar 

  7. L. Wang et al., Med. Dosim. 30, 97 (2005).

    Article  Google Scholar 

  8. Y. Chen, Q. Chen, M. Chen and W. Lu, Med. Phys. 38, 3013 (2011).

    Article  Google Scholar 

  9. L. Verhey and J. Semin, Radiat. Oncol. 9, 78 (1999).

    Article  Google Scholar 

  10. C. X. Yu, Phys. Med. Biol. 40, 1435 (1995).

    Article  Google Scholar 

  11. R. A. Siochi, Int. J. Radiat. Oncol. Biol. Phys. 43, 671 (1999).

    Article  Google Scholar 

  12. P. Xia and L. Verhey, J. Med. Phys. 25, 1424 (1998).

    Article  Google Scholar 

  13. P. Franco et al., Tumori. 97, 498 (2011).

    Google Scholar 

  14. C. Kong et al., Biomed. Imaging Interv. J. 8, e14 (2012).

    Google Scholar 

  15. T. Reynders et al., Radiother. Oncol. 93, 71 (2009).

    Article  Google Scholar 

  16. S. Lee, S. J., K. H. Chang and Y. J. Cao, J. Korean. Phys. Soc. 60, 1961 (2012).

    Article  ADS  Google Scholar 

  17. C. Ceylan, N. Kucuk, H. Bas Ayata, M. Guden and K. Engin, Rep. Pract. Oncol. Radiother. 15, 181 (2010).

    Article  Google Scholar 

  18. A. Katz, J. Technol. Cancer Res. Treat. 9, 463 (2010).

    Article  Google Scholar 

  19. S. E. Cotter et al., Int. J. Radiat. Oncol. Biol. Phys. 81, 1367 (2011).

    Article  Google Scholar 

  20. J. D. Fontenot, A. K. Lee and W. D. Newhauser, Int. J. Radiat. Oncol. Biol. Phys. 74, 616 (2009).

    Article  Google Scholar 

  21. C. Vargas et al., Int. J. Radiat. Oncol. Biol. Phys. 70, 744 (2008).

    Article  Google Scholar 

  22. M. Schwarz et al., Radiother. Oncol. 98, 74 (2011).

    Article  ADS  Google Scholar 

  23. B. Emami et al., Int. J. Radiat. Oncol. Biol. Phys. 21, 109 (1991).

    ADS  MATH  Google Scholar 

  24. S. M. Bentzen et al., Int. J. Radiat. Oncol. Biol. Phys. 76, S3–9 (2010).

    Article  Google Scholar 

  25. E. Shaw et al., Int. J. Radiat. Oncol. Biol. Phys. 27, 1231 (1993).

    Article  Google Scholar 

  26. T. Knoos, I. Kristensen and P. Nilsson, Int. J. Radiat. Oncol. Biol. Phys. 42, 1169 (1998).

    Article  Google Scholar 

  27. M. Yoon et al., J. Appl. Clin. Med. Phys. 8, 9 (2007).

    Google Scholar 

  28. A. van’t Riet, A. C. Mak, M. A. Moerland, L. H. Elders and W. van der Zee, Int. J. Radiat. Oncol. Biol. Phys. 37, 731 (1997).

    Article  Google Scholar 

  29. J. Menhel, D. Levin, D. Alezra, Z. Symon and R. Pfeffer, Phys. Med. Biol. 51, 5363 (2006).

    Article  Google Scholar 

  30. A. Pyakuryal,W. K. Myint, M. Gopalakrishnan, S. Jang, J. A. Logemann and B. B. Mittal, J. Appl. Clin. Med. Phys. 11, 3013 (2010).

    Google Scholar 

  31. H. A. Gay and A. Niemierko, Phys. Med. 23, 115 (2007).

    Article  ADS  Google Scholar 

  32. G. Luxton, P. J. Keall and C. R. King, Phys. Med. Biol. 53, 23 (2008).

    Article  Google Scholar 

  33. M. Rao et al., Med. Phys. 37, 1350 (2010).

    Article  Google Scholar 

  34. D. Pasquier, F. Cavillon, T. Lacornerie, C. Touzeau, E. Tresch and E. Lartigau, Int. J. Radiat. Oncol. Biol. Phys. 85, 549 (2013).

    Article  Google Scholar 

  35. D. M. Poon et al., Clin. Oncol. (R. Coll. Radiol.) 25, 706 (2013).

    Article  Google Scholar 

  36. A. Trofimov et al., Int. J. Radiat. Oncol. Biol. Phys. 69, 444 (2007).

    Article  Google Scholar 

  37. L. Widesott, A. Pierelli, C. Fiorino and et al., Int. J. Radiat. Oncol. Biol. Phys. 80, 1589 (2011).

    Article  Google Scholar 

  38. M. Oliver, W. Ansbacher and W. A. Beckham, J. Appl. Clin. Med. Phys. 10, 3068 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Cao, Y.J., Chang, K.H. et al. Treatment plan comparison of linac step and shoot, tomotherapy, rapidarc, and proton therapy for prostate cancer by using the dosimetrical and the biological indices. Journal of the Korean Physical Society 67, 7–16 (2015). https://doi.org/10.3938/jkps.67.7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.7

Keywords

Navigation