Abstract
We report on an extensive research result about the relationship between the growth parameters of growth temperature, working gas ratio, and Low-temperature (LT) ZnO buffer and the physical properties of surface properties, structural properties, and optical properties in the ZnO films grown on (001) Si substrates by rf-sputtering. In the substrate temperature range of room temperature (RT) - 500 °C, a higher temperature is found to lengthen the surface migration lengths of Zn and O atoms and to promote their surface reaction. In the O2/Ar+O2 ratio range of 0–80%, a higher O2/Ar+O2 ratio is found to suppress the generation of nonradiative recombination centers due to the nonstoichiometric point defects such as O vacancies and Zn interstitials. The buffer layers deposited at RT are found to be partially crystallized by annealing at a high temperature and to be able to serve as seeds for the following ZnO film growth. As a result, the ZnO films fabricated at a substrate temperature of 500 °C and an O2/Ar+O2 ratio of 80% with a LT-ZnO buffer annealed under an O2 ambient of 10 mTorr have the highest crystalline quality.
Similar content being viewed by others
References
N. Shohata, T. Matsumura and T. Ohno, Jpn. J. Appl. Phys. 19, 1793 (1980).
P. Yu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, in Proceedings of the 23rd International Conference on the Physics of Semiconductors, Berlin, edited by M. Scheffler and R. Zimmermann (World Scientific, Singapore, 1996), Vol. 2, p. 1453.
D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).
C. Jagadish and S. J. Pearton, Zinc Oxide Bulk, Thin Films, and Nanostructures: Processing, Properties, and Applications (Elsevier, Oxford, 2006).
S. Adachi, Properties of Group-IV, III-V, and II-VI Semiconductors (John Wiley & Sons, West Sussex, 2005).
K. K. Kim, J. H. Song, H. J. Jung, W. K. Cho, S. J. Park and J. H. Song, J. Appl. Phys. 87, 3573 (2000).
H. F. Liu and S. J. Chua, J. Appl. Phys. 106, 023511 (2009).
D. K. Hwang, M. S. Oh, Y. S. Cho and S. J. Park, Appl. Phys. Lett. 92, 161109 (2008).
K. Ellmer, J. Phys. D: Appl. Phys. 33, R17 (2000).
J. Muller, B. Rech, J. Springer and M. Vanecek, Solar Energy 77, 917 (2004).
P. F. Carcia, R. S. McLean, M. H. Reilly and G. Nunes, ffixJr. Appl. Phys. Lett. 82, 1117 (2003).
E. M. C. Fortunao, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Goncalves, A. J. S. Marques, R. F. P. Martins and L. M. N. Pereira, Appl. Phys. Lett. 85, 2541 (2004).
R. Hong, H. Qi, J. Huang, H. He, Z. Fan and J. Shao, Thin Solid Films 473, 58 (2005).
J. R. R. Bortoleto, M. Chaves, A. M. Rosa, E. P. da Silva, S. F. Durrant, L. D. Trino and P. N. Lisboa-Filho, Appl. Surf. Sci. (2014) (In press).
R. Menon, K. Sreenivas and V. Gupta, J. Appl. Phys. 103, 094903 (2008)
R. Menon, V. Gupta, H. H. Tan, K. Sreenivas and C. Jagadish, J. Appl. Phys. 109, 064905 (2011).
S. Singh, R. S. Srinivasa and S. S. Major, Thin Solid Films 515, 8718 (2007).
Z. W. Liu, C. W. Sun, J. F. Gu and Q. Y. Zhang, Appl. Phys. Lett. 88, 251911 (2006).
M. Ohring, The Materials Science of Thin Films (Academic Press, London, 1992).
S. A. Chevtchenko, J. C. Moore, U. Ozgur, X. Gu, A. A. Baski, H. Morkoc, B. Nemeth and J. E. Nause, Appl. Phys. Lett. 89, 182111 (2006).
A. B. M. A. Ashrafi, N. T. Binh, B. P. Zhang and Y. Segawa, Appl. Phys. Lett. 95, 7738 (2004).
L. Wang and N. C. Giles, Appl. Phys. Lett. 84, 3049 (2004).
G. Xiong, B. B. Ucer, R. T. Williams, J. Lee, B. Bhattacharyya, J. Metson and P. Evans, J. Appl. Phys. 97, 043528 (2005).
X. L. Wu, G. G. Siu, C. L. Fu and H. C. Ong, Appl. Phys. Lett. 78, 2285 (2001).
J. Jie, A. Morita and H. Shirai, J. Appl. Phys. 108, 033521 (2010).
J. S. Song, J. H. Chang, D. C. Oh, J. J. Kim, M. W. Cho, H. Makino, T. Hanada and T. Yao, J. Cryst. Growth 249, 128 (2003).
I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu and N. Sawaki, J. Cryst. Growth 98, 209 (1989).
L. Sugiura, K. Itaya, J. Nishio, H. Fujimoto and Y. Kokubun, J. Appl. Phys. 82, 4877 (1997).
W. Lee et al., J. Cryst. Growth 305, 40 (2007).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kim, KB., Lee, SM., Oh, DC. et al. Influence of growth temperature, working gas ratio, and buffer layer in ZnO films grown on (001) Si substrates by using rf-sputtering. Journal of the Korean Physical Society 67, 676–681 (2015). https://doi.org/10.3938/jkps.67.676
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.3938/jkps.67.676