Skip to main content
Log in

Optimized planning target volume margin in helical tomotherapy for prostate cancer: Is there a preferred method?

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We compare the dosimetrical differences between plans generated for helical tomotherapy by using the 2D or 3D the margining technique for the treatment of prostate cancer. Ten prostate cancer patients were included in this study. For 2D plans, the planning target volume (PTV) was created by adding 5 mm (lateral/anterior-posterior) to the clinical target volume (CTV). For 3D plans, a 5-mm margin was added not only lateral/anterior-posterior, but also superior-inferior, to the CTV. Various dosimetrical indices, including the prescription isodose to target volume (PITV) ratio, conformity index (CI), homogeneity index (HI), target coverage index (TCI), modified dose homogeneity index (MHI), conformation number (CN), critical organ scoring index (COSI), and quality factor (QF) were determined to compare the different treatment plans. Differences between the 2D and the 3D PTV indices were not significant except for the CI (p = 0.023). 3D margin plans (11195 MUs) resulted in higher (13.0%) monitor units than 2D margin plans (9728 MUs). There were no significant differences in any organs at risk (OARs) between the 2D and the 3D plans. Overall, the average dose for the 2D plan was slightly lower than that for the 3D plan dose. Compared to the 2D plan, the 3D plan increased the average treatment time by 1.5 minutes; however, this difference was not statistically significant (p = 0.082). We confirmed that the 2D and the 3D margin plans were not significantly different with regard to various dosimetric indices such as the PITV, CI, and HI for PTV and the OARs with tomotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Jemal, A. Thomas, T. Murray and M. Thun, CA Cancer J. Clin. 52, 23 (2002).

    Article  Google Scholar 

  2. G. A. Viani, L. G. da Silva and E. J. Stefano, Int. J. Radiat. Oncol. Biol. Phys. 83, e619 (2012).

    Article  Google Scholar 

  3. M. C. Aznar et al., Radiother. Oncol. 97, 480 (2010).

    Article  ADS  Google Scholar 

  4. Intensity Modulated Radiation Therapy Collaborative Working Group, Int. J. Radiat. Oncol. Biol. Phys. 51, 88 (2001).

  5. N. Hardcastle, A. Davies, K. Foo, A. Miller and P. E. Metcalfe, J. Med. Imaging. Radiat. Oncol. 54, 235 (2010).

    Article  Google Scholar 

  6. S. Ladjevardi, A. Berglund, E. Varenhorst, O. Bratt, A. Widmark, and G. Sandblom, BJU. Int. 111, 381 (2012).

    Google Scholar 

  7. J. Balog and E. Soisson, Int. J. Radiat. Oncol. Biol. Phys. 71, S113 (2008).

    Article  Google Scholar 

  8. T. R. Mackie, Phys. Med. Biol. 51, R427 (2006).

    Article  Google Scholar 

  9. S. Malone et al., Int. J. Radiat. Oncol. Biol. Phys. 84, 725 (2012).

    Article  Google Scholar 

  10. T. E. Byrne, Med. Dosim. 30, 155 (2005).

    Article  Google Scholar 

  11. K. M. Langen et al., Int. J. Radiat. Oncol. Biol. Phys. 62, 1517 (2005).

    Article  Google Scholar 

  12. C. Beltran, M. G. Herman and B. J. Davis, Int. J. Radiat. Oncol. Biol. Phys. 70, 289 (2008).

    Article  MATH  Google Scholar 

  13. A. Kaiser et al., Int. J. Radiat. Oncol. Biol. Phys. 66, 949 (2006).

    Article  Google Scholar 

  14. D. J. Little, L. Dong, L. B. Levy, A. Chandra and D. A. Kuban, Int. J. Radiat. Oncol. Biol. Phys. 56, 1218 (2003).

    Article  Google Scholar 

  15. F. Trichter and R. D. Ennis, Int. J. Radiat. Oncol. Biol. Phys. 56, 1225 (2003).

    Article  Google Scholar 

  16. M. Palombarini, S. Mengoli, P. Fantazzini, C. Cadioli, C. Degli Esposti and G. P. Frezza, Radiat. Oncol. 7, 56 (2012).

    Article  Google Scholar 

  17. L. Santanam et al., Int. J. Radiat. Oncol. Biol. Phys. 71, 1511 (2008).

    Article  Google Scholar 

  18. P. M. van Haaren, A. Bel, P. Hofman, M. van Vulpen, A. N. Kotte and U. A. van der Heide, Radiother. Oncol. 90, 291 (2009).

    Article  Google Scholar 

  19. J. Zhou et al., Med. Dosim. 35, 31 (2010).

    Article  MATH  Google Scholar 

  20. J. L. Bedford and G. S. Shentall, Med. Phys. 25, 224 (1998).

    Article  Google Scholar 

  21. R. Belshi, D. Pontvert, J. C. Rosenwald and G. Gaboriaud, Int. J. Radiat. Oncol. Biol. Phys. 37, 689 (1997).

    Article  Google Scholar 

  22. J. C. Stroom and P. R. Storchi, Phys. Med. Biol. 42, 745 (1997).

    Article  Google Scholar 

  23. C. H. Ketting, M. Austin-Seymour, I. Kalet, J. Unger, S. Hummel and J. Jacky, Int. J. Radiat. Oncol. Biol. Phys. 445 (1997).

  24. V. S. Khoo, J. L. Bedford, S. Webb and D. P. Dearnaley, Int. J. Radiat. Oncol. Biol. Phys. 42, 673 (1998).

    Article  Google Scholar 

  25. A. M. Pooler, H. M. Mayles, O. F. Naismith, J. P. Sage and D. P. Dearnaley, Radiother. Oncol. 86, 43 (2008).

    Article  Google Scholar 

  26. D. W. Smith, A. M. Morgan, A. M. Pooler and D. I. Thwaites, Br. J. Radiol. 81, 406 (2008).

    Article  Google Scholar 

  27. B. Emami et al., Int. J. Radiat. Oncol. Biol. Phys. 21, 109 (1991).

    ADS  Google Scholar 

  28. S. M. Bentzen et al., Int. J. Radiat. Oncol. Biol. Phys. 76, S3 (2010).

    Article  Google Scholar 

  29. C. A. Lawton et al., Int. J. Radiat. Oncol. Biol. Phys. 74, 383 (2009).

    Article  Google Scholar 

  30. E. Shaw et al., Int. J. Radiat. Oncol. Biol. Phys. 27, 1231 (1993).

    Article  Google Scholar 

  31. T. Knoos, I. Kristensen and P. Nilsson, Int. J. Radiat. Oncol. Biol. Phys. 42, 1169 (1998).

    Article  Google Scholar 

  32. M. Yoon et al., J. Appl. Clin. Med. Phys. 8, 9 (2007).

    Google Scholar 

  33. A. van’t Riet, A. C. Mak, M. A. Moerland, L. H. Elders and W. van der Zee, Int. J. Radiat. Oncol. Biol. Phys. 37, 731 (1997).

    Article  Google Scholar 

  34. J. Menhel, D. Levin, D. Alezra, Z. Symon and R. Pfeffer, Phys. Med. Biol. 51, 5363 (2006).

    Article  Google Scholar 

  35. A. Pyakuryal, W. K. Myint, M. Gopalakrishnan, S. Jang, J. A. Logemann and B. B. Mittal, J. Appl. Clin. Med. Phys. 11, 3013 (2010).

    Google Scholar 

  36. ICRU, J. ICRU. 10, Np (2010).

  37. J. Yang, A. S. Garden, Y. Zhang, L. Zhang and L. Dong, Med. Phys. 39, 5136 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y.J., Lee, S., Chang, K.H. et al. Optimized planning target volume margin in helical tomotherapy for prostate cancer: Is there a preferred method?. Journal of the Korean Physical Society 67, 26–32 (2015). https://doi.org/10.3938/jkps.67.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.26

Keywords

Navigation