Skip to main content
Log in

A Monte Carlo study of the relationship between the time structures of prompt gammas and the in-vivo radiation dose in proton therapy

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

For in-vivo range verification in proton therapy, attempts have been made to measure the spatial distribution of the prompt gammas generated by the proton-induced interactions and to determine the proton dose distribution. However, the high energies of prompt gammas and background gammas are still problematic in measuring the distribution. In this study, we suggested a new method for determining the in-vivo range by utilizing the time structure of the prompt gammas formed during the rotation of a range modulation wheel (RMW) in passive scattering proton therapy. To validate the Monte Carlo code simulating the proton beam nozzle, we compared the axial percent depth doses (PDDs) with the measured PDDs for varying beam range from 4.73 to 24.01 cm. Also, we assessed the relationship between the proton dose rate and the time structure of the prompt gammas in a water phantom. The results of the PDD showed agreement within relative errors of 1.1% in the distal range and 2.9% in the modulation width. The average dose difference in the modulation was assessed as less than 1.3% by comparison with the measurements. The time structure of prompt gammas was well-matched, within 0.39 ms, with the proton dose rate, and this enabled an accurate prediction of the in-vivo range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Min, X. Zhu, B. A. Winey, K. Grogg, M. Testa, G. El Fakhri, T. R. Bortfeld, H. Paganetti and H. A. Shih, Intern. J. Radi. Oncol. Biol. Phys. 86, 183 (2013).

    Article  Google Scholar 

  2. C. H. Min, C. H. Kim, M. Y. Youn and J.W. Kim, Appl. Phys. Lett. 89, 183517 (2006).

    Article  ADS  Google Scholar 

  3. M. Moteabbed, S. Espana and H. Paganetti, Phys. Med. and Biol. 56, 1063 (2011).

    Article  ADS  Google Scholar 

  4. C. H. Min, H. R. Lee, C. H. Kim and S. B. Lee, Med. Phys. 39, 2100 (2012).

    Article  Google Scholar 

  5. S. W. Peterson, D. Robertson and J. Polf, Phys. Med. Biol. 55, 6841 (2010).

    Article  Google Scholar 

  6. J. Smeets et al., Phys. Med. Biol. 57, 3371 (2012).

    Article  Google Scholar 

  7. M. Testa, C. H. Min, J. M. Verburg, J. Schumann, H. M. Lu and H. Paganetti, Phys. Med. Biol. 59, 4181 (2014).

    Article  Google Scholar 

  8. J. M. Verburg and J. Seco, Phys. Med. Biol. 59, 7089 (2014).

    Article  Google Scholar 

  9. J. W. Shin et al., J. Korean Phys. Soc. 56, 153 (2010).

    Article  Google Scholar 

  10. D. H. Kim et al., J. Korean Phys. Soc. 61, 1125 (2012).

    Article  ADS  Google Scholar 

  11. S. Agostinelli et al., Nucl. Instru. Meth. Phys. Res. A 506, 250 (2003).

    Article  ADS  MATH  Google Scholar 

  12. J. C. Zacharatou and H. Paganetti, IEEE TNS 55, 1018–1025 (2008).

    Google Scholar 

  13. National Institute of Supercomputing and Networking (http://www.nisn.re.kr).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chul Hee Min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, WG., Min, C.H., Shin, JI. et al. A Monte Carlo study of the relationship between the time structures of prompt gammas and the in-vivo radiation dose in proton therapy. Journal of the Korean Physical Society 67, 248–253 (2015). https://doi.org/10.3938/jkps.67.248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.248

Keywords

Navigation