Skip to main content
Log in

Evaluation of various deformable image registrations for point and volume variations

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The accuracy of deformable image registration (DIR) has a significant dosimetric impact in radiationtreatment planning. Many groups have studied the accuracy of DIR. In this study, we evaluatedthe accuracy of various DIR algorithms by using variations of the deformation point and volume.The reference image (I ref ) and volume (V ref ) were first generated by using virtual deformation QAsoftware (ImSimQA, Oncology System Limited, UK). We deformed I ref with axial movement of thedeformation point and V ref , depending on the type of deformation (relaxation and contraction) inImSimQA software. The deformed image (I def ) and volume (V def ) acquired by using the ImSimQAsoftware were inversely deformed relative to I ref and V ref by using DIR algorithms. As a result,we acquired a deformed image (I id ) from I def and volume (V id ) from V ref . Four intensity-basedalgorithms were tested by following the horn-schunk optical flow (HS), iterative optical flow (IOF),modified demons (MD) and fast demons (FD) with the Deformable Image Registration and AdaptiveRadiotherapy Toolkit (DIRART) of MATLAB. The image similarity between I ref and I id wascalculated to evaluate the accuracy of DIR algorithms using by Normalized Mutual Information(NMI) and Normalized Cross Correlation (NCC) metrics, when the distance of point deformationwas moved 4 mm, the value of NMI was above 1.81 and that of NCC was above 0.99 in all DIRalgorithms. As the degree of deformation was increased, the degree of image similarity decreased.When the V ref was increased or decreased by about 12%, the difference between V ref and V id waswithin ±5% regardless of the type of deformation, the deformation was classified into two types:deformation 1 increased the V ref (relaxation) and deformation 2 decreased the V ref (contraction).The value of the Dice Similarity Coefficient (DSC) was above 0.95 in deformation 1 except for theMD algorithm. In the case of deformation 2, the value of the DSC was above 0.95 in all DIR algorithms.The I def and the V def were not completely restored to I ref and V ref , and the accuracy ofthe DIR algorithms were different, depending on the degree of deformation. Hence, the performanceof DIR algorithms should be verified for the desired applications

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. J. Yeo, M. L Taylor, J. R. Supple, R. L. Smith, L. Dunn, T. Kron and R. D. Franich, Med. Phy. 39, 5065 (2012).

  2. J. D. Lawson, E. Schreibmann, A. B. Jani and T. Fox, J. Appl. Clin. Med. Phys. 8, 2432 (2007).

    Article  Google Scholar 

  3. M. L. Kessler, Br. J. Radi. 79, 99 (2006).

    Article  Google Scholar 

  4. D. Ragan, G. Starckschall and T. McNutt, Med. Phys. 32, 2254 (2005).

    Article  Google Scholar 

  5. G. Zhang, T. J. Dilling, C. W. Stevens and K. M. Forster, Cancer Control. 15, 112 (2008).

    Article  Google Scholar 

  6. S. Wognum, S. E. Heethuis, T. Rosario, M. S. Hoogeman and A. Bel, Med. Phys. 41, 5065 (2014).

    Article  Google Scholar 

  7. N. Kriby, C. Chuang, U. Udeda and J. Pouliot, Med. Phys. 40, 011702 (2013).

    Article  Google Scholar 

  8. Oliver Kutter, http://www.tu-muenchen.de/, Hauptseminar (2014).

  9. B. G. Fallone, D. R. Rivest, T. A. Riauka and A. G. Murtha, Appl. clin. Med. phys. 11, 101 (2010).

    Google Scholar 

  10. A. Cherpak, M. Serban, J. Seuntjens and J. Cygler, Med. Phys. 38, 179 (2010).

    Article  Google Scholar 

  11. M. Serban, E. Heath, G. Stroain, D. Louis Collins and J. Seuntjens, Med. Phys. 35, 1094 (2008).

    Article  Google Scholar 

  12. U. J. Yeo, M. L Taylor, L. Dunn, T. Kron, R. L. Smith and R. D. Franich, Med. Phy. 39, 2203 (2012).

    Article  Google Scholar 

  13. ImSimQA module, http://www.osl.uk.com.

  14. F. L. Bookstein, IEEE Trans. Pattern Analysis and Machine Intelligence 11, 567 (1989).

    Article  MATH  Google Scholar 

  15. R. Varadhan, G. Karangelis, K. Krishnan and S. Hui, J. Appl. Clin. Med. Phys. 14, 4066 (2013).

    Google Scholar 

  16. K. Nie, C. Chuang, N. Kirby, S. Braunstein and J. Pouliot, Med. Phys. 40, 041911 (2013).

    Article  Google Scholar 

  17. J. Pukala, S. L. Meeks, R. J. Staton, F. J. Bova, R. R. Manon and K. M. Langen, Med. Phys. 40, 111703 (2013).

    Article  Google Scholar 

  18. D. Yang, S. Brame, I. El Naqa, A. Aditya, Y. Wu, S. M. Goddu, S. Mutic, J. O. Deasy and D. A. Low, Med. Phys. 38, 67 (2011).

    Article  Google Scholar 

  19. B. K. P. Horn and B. G. Schunck, Artif. Intell. 17, 185 (1981).

    Article  Google Scholar 

  20. J. L. Barron, D. J. Fleet and S. S. Beauchemin, Int. J. Comput. Vis. 12, 43 (1994).

    Article  Google Scholar 

  21. B. T. T. Yeo, M. Sabuncu, T. Ayache, B. Fischl and P. Golland, Med. Image Comput. Comput. Assist. Interv. 5241, 745 (2008).

    Google Scholar 

  22. H. Wang, L. Dong, J. O’Daniel, R. Mohan and A. S. Garden, Phys. Med. Biol. 50, 2887 (2005).

    Article  Google Scholar 

  23. C. Studholme, D. L. G. Hill and D. J. Hawkes, Pattern Recognition 32, 71 (1999).

    Article  Google Scholar 

  24. Y. Yaegashi, K. Tateoka, K. Fujimoto, T. Nakazawa, A. Nakata, Y. Saito, T. Abe, M. Yano and K. Sakata, J. Nucl. Med. Radiat. Ther. 3, 137 (2012).

    Google Scholar 

  25. U. J. Yeo, J. R. Supple, M. L. Taylor, R. Smith, T. Kron and R. D. Franich, Med. Phys 40, 10171 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kum Bae Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S.C., Lee, S.S., Kim, MS. et al. Evaluation of various deformable image registrations for point and volume variations. Journal of the Korean Physical Society 67, 218–223 (2015). https://doi.org/10.3938/jkps.67.218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.218

Keywords

Navigation