Skip to main content
Log in

Influence of the surface properties of polymeric insulators on the electrical stability of 6,13-bis(triisopropylsilylethynyl)-pentacene thin-film transistors

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigated the electrical stabilities of 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) thin-film transistors (TFTs) fabricated with cross-linked polymeric insulators, i.e., poly(4-vinylphenol) (PVP) and poly(4-vinylphenol-co-methyl methacrylate) (PVP-co-PMMA). Compared to the cross-linked PVP insulator, the TIPS-pentacene TFTs containing a cross-linked PVP-co-PMMA insulator exhibit less hysteresis upon reversal of the gate-voltage sweep direction and a lower shift in the threshold voltage during consecutive operations, which is ascribed to the relatively hydrophobic surface of the cross-linked PVP-co-PMMA insulator. When these polymer solutions are mixed with yttrium-oxide nanoparticles, the rough surfaces of both nanocomposite insulators lead to larger shifts in the threshold voltage during consecutive operations, but its effect on the hysteretic behavior in the transfer characteristics of the TIPS-pentacene TFTs is negligible. Thus, the influence of the surface properties of the polymeric insulators on the electrical stability of TIPS-pentacene TFTs can be explained through hole-trapping and the delayed-depletion of the holes at the insulator/semiconductor interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Zhou, S. Park, B. Bai, J. Sun, S.-C. Wu, T. N. Jackson, S. Nelson, D. Freeman and Y. Hong, IEEE Electr. Dev. Lett. 26, 640 (2005).

    Article  ADS  Google Scholar 

  2. P. Lin and F. Yan, Adv. Mater. 24, 34 (2012).

    Article  ADS  Google Scholar 

  3. H. Klauk, U. Zschieschang, J. Pflaum and M. Halik, Nature 445, 745 (2007).

    Article  ADS  Google Scholar 

  4. T. Sekitani, Y. Noguchi, U. Zschieschang, H. Klauk and T. Someya, Proc. Natl. Acad. Sci. USA 105, 4976 (2008).

    Article  ADS  Google Scholar 

  5. H. Kang, R. Kitsomboonloha, J. Jang and V. Subramanian, Adv. Mater. 24, 3065 (2012).

    Article  Google Scholar 

  6. M. Kim, I.-K. You, H. Han, S.-W. Jung, T.-Y. Kim, B.-K. Ju and J. B. Koo, Electrochem. Solid-Sate Lett. 14, H333 (2011).

    Article  Google Scholar 

  7. C. Zhao, X. Chen, C. Gao, M.-K. Ng, H. Dingm, K. Park and Y. Gao, Synth. Met. 159, 995 (2009).

    Article  Google Scholar 

  8. J. Mei, Y. Diao, A. L. Appleton, L. Fang and Z. Bao, J. Am. Chem. Soc. 135, 6724 (2013).

  9. J. Smith, R. Hamilton, I. McCulloch, N. Stingelin- Stutzmann, M. Heeney, D. D. C. Bradley and T. D. Anthopoulos, J. Mater. Chem. 20, 2562 (2010).

    Article  Google Scholar 

  10. D. K. Hwang, C. Fuentes-Hernandez, J. D. Berrigan, Y. Fang, J. Kim, W. J. Potscavage, H. Cheun, K. H. Sandhage and B. Kippelen, J. Mater. Chem. 22, 5531 (2012).

    Article  Google Scholar 

  11. J. M. Ko, Y. H. Kang, C. Lee and S. Y. Cho, J. Mater. Chem. C 1, 3091 (2013).

    Article  Google Scholar 

  12. S. Faraji, T. Hashimoto, M. L. Turner and L. A. Majewski, Org. Electron. 17, 178 (2015).

    Article  Google Scholar 

  13. S. E. Fritz, T. W. Kelley and C. D. Frisbie, J. Phys. Chem. B 109, 10574 (2005).

    Article  Google Scholar 

  14. W.-Y. Chou, C.-W. Kuo, H.-L. Cheng, Y.-R. Chen, F.- C. Tang, F.-Y. Yang, D.-Y. Shu and C.-C. Liao, Appl. Phys. Lett. 89, 112126 (2006).

    Article  ADS  Google Scholar 

  15. S. H. Kim, J. Jang, H. Jeon, W. M. Yun, S. Nam and C. E. Park, Appl. Phys. Lett. 92, 183306 (2008).

    Article  ADS  Google Scholar 

  16. M. Egginger, S. Bauer, R. Schwödiauer, H. Neugebauer and N. S. Sariciftci, Montash Chem. 140, 735 (2009).

    Article  Google Scholar 

  17. J. Park, B. J. Park, H. J. Choi, Y. Kim and J. S. Choi, IEEE Electron Dev. Lett. 30, 1146 (2009).

    Article  ADS  Google Scholar 

  18. M. D. Duca, C. L. Choudhary and T. Pop, Polym. Degrad. Stab. 61, 65 (1998).

    Article  Google Scholar 

  19. L. Jiang, J. Zhang, D. Gamota and C. G. Takoudis, Org. Electron. 11, 959 (2010).

    Article  Google Scholar 

  20. J. Park, J.-H. Bae, W.-H. Kim, M.-H. Kim, C.-M. Keum, S.-D. Lee and J. S. Choi, Materials 3, 3614 (2010).

    Article  ADS  Google Scholar 

  21. J. X. Zheng, G. Ceder, T. Maxisch, W. K. Chim and W. K. Choi, Phys. Rev. B 73, 104101 (2006).

    Article  ADS  Google Scholar 

  22. W. J. E. Beek and R. A. J. Janssen, Adv. Funct. Mater. 12, 519 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehoon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baang, S., Lee, H., Ham, Y. et al. Influence of the surface properties of polymeric insulators on the electrical stability of 6,13-bis(triisopropylsilylethynyl)-pentacene thin-film transistors. Journal of the Korean Physical Society 67, 2124–2130 (2015). https://doi.org/10.3938/jkps.67.2124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.2124

Keywords

Navigation