Skip to main content
Log in

Dirac coupled-channel analyses of the high-lying excited states at 22Ne(p,p′)22Ne

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Dirac phenomenological coupled-channel analyses are performed by using an optical potential model for the high-lying excited vibrational states at 800-MeV unpolarized proton inelastic scatterings from 22Ne nucleus. Lorentz-covariant scalar and time-like vector potentials are used as direct optical potentials, and the first-order vibrational collective model is used for the transition optical potentials to describe the high-lying excited vibrational collective states. The complicated Dirac coupled-channel equations are solved phenomenologically by using a sequential iteration method by varying the optical potential and the deformation parameters. Relativistic Dirac coupled-channel calculations are able to describe the high-lying excited states of the vibrational bands in 22Ne clearly better than the nonrelativistic coupled-channel calculations. The channel-coupling effects of the multistep process for the excited states of the vibrational bands are investigated. The deformation parameters obtained from the Dirac phenomenological calculations for the high-lying vibrational excited states in 22Ne are found to agree well with those obtained from the nonrelativistic calculations using the same Woods-Saxon potential shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. G. Arnold, B. C. Clark, R. L. Mercer and P. Swandt, Phys. Rev. C 23, 1949 (1981).

    Article  ADS  Google Scholar 

  2. B. C. Clark, R. L. Mercer and P. Swandt, Phys. Lett. 122B, 211 (1983).

    Article  ADS  Google Scholar 

  3. S. Hama, B. C. Clark, R. E. Kozack, S. Shim, E. D. Cooper, R. L. Mercer and B. D. Serot, Phys. Rev. C 37 1111, (1988).

    Article  ADS  Google Scholar 

  4. S. Shim, Ph. D. dissertation, The Ohio State University 1989

    Google Scholar 

  5. L. Kurth, B. C. Clark, E. D. Cooper, S. Hama, S. Shim, R. L. Mercer, L. Ray and G. W. Hoffmann, Phys. Rev. C 49, 2086 (1994).

    Article  ADS  Google Scholar 

  6. S. Shim, B. C. Clark, E. D. Cooper, S. Hama, R. L. Mercer, L. Ray, J. Raynal and H. S. Sherif, Phys. Rev. C 42, 1592 (1990).

    Article  ADS  Google Scholar 

  7. R. de Swiniarski, D. L. Pham and J. Raynal, Z. Phys. A-Hadrons and Nuclei 343, 179 (1992).

    Article  ADS  Google Scholar 

  8. D. L. Pham and R. de Swiniarski, N. Cimento A 107, 1405 (1994).

    Article  ADS  Google Scholar 

  9. J. J. Kelly, Phys. Rev. C 71, 064610 (2005).

    Article  ADS  Google Scholar 

  10. S. Shim, M. W. Kim, B. C. Clark and L. Kurth Kerr, Phys. Rev. C 59, 317 (1999).

    Article  ADS  Google Scholar 

  11. S. Shim, S.-H. Ryu and M.-S. Kim, J. Korean. Phys. Soc. 51, 271 (2007)

    Article  ADS  Google Scholar 

  12. S. Shim, S.-H. Ryu and M.-S. Kim, J. Korean. Phys. Soc. 53, 1146 (2008).

    Article  ADS  Google Scholar 

  13. S. Shim and M. W. Kim, Int. J. Mod. Phys. E 21, 1250098 (2012).

    Article  ADS  Google Scholar 

  14. J. Raynal, Computing as a Language of Physics, ICTP International Seminar Course, (IAEA, Italy, 1972) p. 281

    Google Scholar 

  15. J. Raynal, Notes on ECIS94, Note CEA-N-2772, 1994.

    Google Scholar 

  16. C. J. Horowitz and B. D. Serot, Nucl. Phys. A 368, 503 (1981).

    Article  ADS  Google Scholar 

  17. R. J. Furnstahl, C. E. Price and G. E. Walker, Phys. Rev. C 36, 2590 (1987).

    Article  ADS  Google Scholar 

  18. L. Ray and G. W. Hoffmann, Phys. Rev. C 31, 538 (1986).

    Article  ADS  Google Scholar 

  19. T. D. Cohen, R. J. Furnstahl and D. K. Griegel, Phys. Rev. Lett. 67, 961 (1991).

    Article  ADS  Google Scholar 

  20. G. S. Blanpied, B. G. Ritchie, M. L. Barlett, R. W. Fergerson, G. W. Hoffmann, J. A. McGill and B. H. Wildenthal, Phys. Rev. C 38, 2180 (1988)

    Article  ADS  Google Scholar 

  21. Experimental Nuclear Reaction Data (EXFOR), www-nds.iaea.org.

  22. M.-W. Kim and S. Shim, J. Korean. Phys. Soc. 66, 850 (2015).

    Article  ADS  Google Scholar 

  23. S. Shim, J. Korean. Phys. Soc. 65, 1179 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sugie Shim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, S., Kim, MW. Dirac coupled-channel analyses of the high-lying excited states at 22Ne(p,p′)22Ne. Journal of the Korean Physical Society 67, 2059–2064 (2015). https://doi.org/10.3938/jkps.67.2059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.2059

Keywords

Navigation