Skip to main content
Log in

First-principles study on the adsorption properties of phenylalanine on carbon graphitic structures

  • Letters
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 2016

Abstract

Using ab-initio density functional theory, we investigate the binding properties of phenylalanine, an amino acid, on graphitic carbon structures, such as graphene, nanotubes, and their modified structures. We focus especially on the effect of the adsorbate on the geometrical and the electronic structures of the absorbents. The phenylalanine molecule is found to bind weakly on pristine graphitic structures with a binding energy of 40−70 meV and not to change the electronic configuration of the graphitic structures, implying that the phenylalanine molecule may not be detected on pristine graphitic structures. On the other hand, the phenylalanine molecule exhibits a substantial increase in its binding energy up to ~2.60 eV on the magnesium-decorated boron-doped graphitic structures. We discover that the Fermi level of the system, which was shifted below the Dirac point of the graphitic structures due to p-doping by boron substitution, can be completely restored to the Dirac point because of the amino acid adsorption. This behavior implies that such modified structures can be utilized to detect phenylalanine molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. W. Mintmire, B. I. Dunlap and C. T. White, Phys. Rev. Lett. 68, 631 (1992).

    Article  ADS  Google Scholar 

  2. C. Dekker, Phys. Today 52, 22 (1999).

    Article  ADS  Google Scholar 

  3. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  4. Y.-K. Kwon, D. Tománek, and S. Iijima, Phys. Rev. Lett. 82, 1470 (1999).

    Article  ADS  Google Scholar 

  5. R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. Chan, J. Tersoff and P. Avouris, Phys. Rev. Lett. 87, 256805 (2001).

    Article  ADS  Google Scholar 

  6. A. Bachtold, P. Hadley, T. Nakanishi and C. Dekker, Science 294, 1317 (2001).

    Article  ADS  Google Scholar 

  7. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller and P. Avouris, Phys. Rev. Lett. 89, 106801 (2002).

    Article  ADS  Google Scholar 

  8. A. Javey, J. Guo, Q. Wang, M. Lundstrom and H. Dai, Nature 424, 654 (2003).

    Article  ADS  Google Scholar 

  9. M. Lee, J. Im, B. Y. Lee, S. Myung, J. Kang, L. Huang, Y.-K. Kwon and S. Hong, Nat. Nanotechnol. 1, 66 (2006).

    Article  ADS  Google Scholar 

  10. E. Castro, K. Novoselov, S. Morozov, N. Peres, J. dos Santos, J. Nilsson, F. Guinea, A. Geim and A. Neto, Phys. Rev. Lett. 99, 216802 (2007).

    Article  ADS  Google Scholar 

  11. Z. Chen, Y.-M. Lin, M. J. Rooks and P. Avouris, Physica E 40, 228 (2007).

    Article  ADS  Google Scholar 

  12. A. Rycerz, J. Tworzydlo and C. W. J. Beenakker, Nat. Phys. 3, 172 (2007).

    Article  Google Scholar 

  13. A. F. Young and P. Kim, Nat. Phys. 5, 13 (2008).

    Google Scholar 

  14. M. Lee, K. Y. Baik, M. Noah, Y.-K. Kwon, J.-O. Lee and S. Hong, Lab Chip 9, 2267 (2009).

    Article  Google Scholar 

  15. M. Lee, M. Noah, J. Park, M.-J. Seong, Y.-K. Kwon and S. Hong, Small 5, 1642 (2009).

    Article  Google Scholar 

  16. J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen and P. Peumans, ACS Nano 4, 43 (2010).

    Article  Google Scholar 

  17. S. Myung, S. Woo, J. Im, H. Lee, Y.-S. Min, Y.-K. Kwon and S. Hong, Nanotechnology 21, 345301 (2010).

    Article  ADS  Google Scholar 

  18. F. Xia, D. B. Farmer, Y.-M. Lin and P. Avouris, Nano Lett. 10, 715 (2010).

    Article  ADS  Google Scholar 

  19. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab and K. Kim, Nature 490, 192 (2012).

    Article  ADS  Google Scholar 

  20. S. Dröscher, C. Barraud, K. Watanabe, T. Taniguchi, T. Ihn and K. Ensslin, New J. Phys. 14, 103007 (2012).

    Article  ADS  Google Scholar 

  21. Y. L. Kim, H. Y. Jung, S. Park, B. Li, F. Liu, J. Hao, Y.-K. Kwon, Y. J. Jung and S. Kar, Nat. Photonics 8, 239 (2014).

    Article  Google Scholar 

  22. L. Ju, Z. Shi, N. Nair, Y. Lv, C. Jin, J. Velasco Jr, C. Ojeda-Aristizabal, H. A. Bechtel, M. C. Martin, A. Zettl, J. Analytis and F. Wang, Nature 520, 650 (2015).

    Article  ADS  Google Scholar 

  23. S.-H. Kang, G. Kim and Y.-K. Kwon, Phys. Chem. Chem. Phys. 17, 5072 (2015).

    Article  Google Scholar 

  24. S. Sotiropoulou and N. A. Chaniotakis, Anal. Bioanal. Chem. 375, 103 (2003).

    Google Scholar 

  25. A. Star, K. Bradley, J.-C. P. Gabriel and G. Grüner, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 49, 887 (2004).

    Google Scholar 

  26. L. Piao, Q. Liu, Y. Li and C. Wang, J. Phys. Chem. C 112, 2857 (2008).

    Article  Google Scholar 

  27. H. Song, Y. Lee, T. Jiang, G. Kussow, M. Lee, S. Hong, Y.-K. Kwon and H. Choi, J. Phys. Chem. C 112, 629 (2008).

    Article  Google Scholar 

  28. C.-H. Lu, H.-H. Yang, C.-L. Zhu, X. Chen and G.-N. Chen, Angew. Chem. 121, 4879 (2009).

    Article  Google Scholar 

  29. M. Ganji, Diam. Relat. Mater. 18, 662 (2009).

    Article  ADS  Google Scholar 

  30. C. Rajesh, C. Majumder, H. Mizuseki and Y. Kawazoe, J. Chem. Phys. 130, 124911 (2009).

    Article  ADS  Google Scholar 

  31. L. Piao, Q. Liu, Y. Li and C. Wang, J. Nanosci. Nanotechnol. 9, 1394 (2009).

    Article  Google Scholar 

  32. Z. Wang, M. Gerstein and M. Snyder, Nat. Rev. Genet. 10, 57 (2009).

    Article  Google Scholar 

  33. M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng and H. L. Poh, Trac-Trends Anal. Chem. 29, 954 (2010).

    Article  Google Scholar 

  34. B. Y. Lee, M. G. Sung, J. Lee, K. Y. Baik, Y.-K. Kwon, M.-S. Lee and S. Hong, ACS Nano 5, 4373 (2011).

    Article  Google Scholar 

  35. H.-J. Lee, G. Kim and Y.-K. Kwon, Chem. Phys. Lett. 580, 57 (2013).

    Article  ADS  Google Scholar 

  36. H. Y. Jung, Y. L. Kim, S. Park, A. Datar, H.-J. Lee, J. Huang, S. Somu, A. Busnaina, Y. J. Jung and Y.-K. Kwon, Analyst 138, 7206 (2013).

    Article  ADS  Google Scholar 

  37. W. R. Centerwall, S. A. Centerwall, V. Armon and L. B. Mann, J. Pediatr. 59, 102 (1961).

    Article  Google Scholar 

  38. R. Williams, A. Cyril, D. S. Mamotte and J. R. Burnett, Clin. Biochem. Rev. 29, 31 (2008).

    Google Scholar 

  39. B. K. Burton, D. K. Grange, A. Milanowski, G. Vockley, F. Feillet, E. A. Crombez, V. Abadie, C. O. Harding, S. Cederbaum, D. Dobbelaere, A. Smith and A. Doren baum, J. Inherit. Metab. Dis. 30, 700 (2007).

    Article  Google Scholar 

  40. R. Guthrie and A. Susi, Pediatr. 32, 338 (2007).

    Google Scholar 

  41. C. R. Scriver, J. Clin Invest. 101, 2613 (1998).

    Article  Google Scholar 

  42. H. Bickel, J. Gerrard and E. M. Hickmans, Acta Paediatr. 43, 64 (1954).

    Article  Google Scholar 

  43. G. Kim, S.-H. Jhi, S. Lim and N. Park, Phys. Rev. B 79, 155437 (2009).

    Article  ADS  Google Scholar 

  44. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  45. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  46. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  ADS  Google Scholar 

  47. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).

    ADS  Google Scholar 

  48. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  ADS  Google Scholar 

  49. L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).

    Article  ADS  Google Scholar 

  50. M. R. Hestenes and E. Stiefel, J. Res. Natl. Bur. Stand. 49, 409 (1952).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Kyun Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, SH., Kwon, DG., Park, S. et al. First-principles study on the adsorption properties of phenylalanine on carbon graphitic structures. Journal of the Korean Physical Society 67, 2020–2025 (2015). https://doi.org/10.3938/jkps.67.2020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.2020

Keywords

Navigation