Skip to main content
Log in

Stimulated myogenic differentiation of C2C12 murine myoblasts by using graphene oxide

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Currently, applications of graphene and its derivatives have been reported in many fields. In particular, graphene oxide (GO) has been studied for biomedical applications, such as cell imaging, biosensors and drug delivery systems, because of its good biocompatibility and excellent physicochemical properties. Recently, much research has been conducted to control cell behavior, including attachment, proliferation and differentiation by using GO. On the other hand, the effects of GO on myogenic differentiation have not been explored. In the present study, the influence of GO on myogenic differentiation was investigated. This study assessed the cytotoxicity of GO and evaluated the myogenic differentiation of C2C12 murine myoblasts in growth media containing 10 μg/mL of GO. The physicochemical properties of GO were characterized by using atomic force microscopy (AFM) and Raman spectroscopy. The cytotoxicity was evaluated by using a WST-8 assay. An analysis of myogenic differentiation was performed by using immunofluorescence staining for the myosin heavy chain (MHC; myogenic differentiation marker) and was determined by calculating the amount of multinucleate myotube formation, the fusion index and the maturation index. GO did not exhibit cytotoxicity at low concentrations and effectively stimulated the myogenic differentiation of C2C12 murine myoblasts. Therefore, GO has potential skeletal tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Murtuza, J. W. Nichol and A. Khademhosseini, Tissue Eng: Part B - Rev 15, 443 (2009).

    Article  Google Scholar 

  2. J. A. Hubbell, Curr. Opin. Biotech. 14, 551 (2003).

    Article  Google Scholar 

  3. W. F. Liu and C. S. Chen, Mater. Today 8, 29 (2005).

    Article  Google Scholar 

  4. J. Lee, B. S. Kang, B. Hicks, T. F. Chancellor Jr., B. H. Chu, H-T. Wang, B. G. Keselowsky, F. Ren and T. P. Lele, Biomaterials 29, 3743 (2008).

    Article  Google Scholar 

  5. L. Little, K. E. Healy and D. Schaffer, Chem. Rev. 108, 1787 (2008).

    Article  Google Scholar 

  6. P. T. Oliveira, S. F. Zalzal,M. M. Beloti, A. L. Rosa and A. Nanci, J. Biomed. Mater. Res. A. 80, 554 (2007).

    Article  Google Scholar 

  7. T. J. Lee, S. Park, S. H. Bhang, J-K. Yoon, I. Jo, G-J. Jeong, B. H. Hong and B. S. Kim, Biochem. Biophys. Res. Commun. 452, 174 (2014).

    Article  Google Scholar 

  8. T. K. Das and S. Prusty, Plym. Plast. Technol. 52, 319 (2013).

    Article  Google Scholar 

  9. W. Paul and C. P. Sharma, Trends Biomater. Artif. Organs 25, 91 (2011).

    Google Scholar 

  10. S. K. Lee, H. Kim and B. S. Shim, Carbon Lett. 14, 63 (2013)

    Article  Google Scholar 

  11. Y. Wang, Z. Li, J. Wang, J. Li and Y. Lin, Trends Biotechnol. 32, 597 (2014).

    Article  Google Scholar 

  12. Z. Liu, J. T. Robinson, X. Sun and H. J. Dai, J. Am. Chem. Soc. 130, 10876 (2008).

    Article  Google Scholar 

  13. X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric and H. Dai, Nano Res. 1, 203 (2008).

    Article  Google Scholar 

  14. K. L. Aillon, Y. M. Xie, N. El-Gendy, C. J. Berkland and M. L. Forrest, Adv. Drug Deliver. Rev. 61, 457 (2009).

    Article  Google Scholar 

  15. O. Ruiz, K. Fernando, B. Wang, N. Brown, P. Luo, N. McNamara, M. Vangsness, Y. Sun and C. Bunker, ACS Nano 5, 8100 (2011).

    Article  Google Scholar 

  16. G. Y. Chen, D. W-P. Pang, S-M. Hwang, H-Y. Tuan and Y-C. Hu, Biomaterials. 33, 418 (2012).

    Article  Google Scholar 

  17. H. H. Yoon, S. H. Bhang, T. Kim, T. Yu, T. Hyeon and B. S. Kim, Adv. Funct. Mater. 24, 6455 (2014).

    Article  Google Scholar 

  18. W. Qi, W. Yuan, J. Yan and H. Wang, J. Mater. Chem. B 2, 5461 (2014).

    Article  Google Scholar 

  19. C. Mattevi et al., Adv. Funct. Mater. 19, 2577 (2009).

    Article  Google Scholar 

  20. D. Li, M. B. Muller, S. Gilje, M. B. Kaner and G. G. Wallace, Nat. Nanotechnol. 3, 101 (2008).

    Article  ADS  Google Scholar 

  21. Y. Si and E. T. Samulski, Nano lett. 8, 1679 (2008).

    Article  ADS  Google Scholar 

  22. W. S. Hummers Jr. and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  Google Scholar 

  23. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Carbon 45, 1558 (2007).

    Article  Google Scholar 

  24. S. B. Ye, J. C. Feng and P. Y. Wu, J. Mater. Chem. A 1, 3495 (2013).

    Article  Google Scholar 

  25. X. Qi, T. N. Zhou, S. Deng, G. Y. Zong, X. L. Yao and Q. Fu, J. Mater. Sci. 49, 1785 (2014).

    Article  ADS  Google Scholar 

  26. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).

    Article  ADS  Google Scholar 

  27. M. Lv, Y. Zhang, L. Liang, M. Wei, W. Hu, X. Li and Q. Huang, Nanoscale 4, 3861 (2012).

    Article  ADS  Google Scholar 

  28. S. H. Ku and C. B. Park, Biomaterials 34, 2017 (2013).

    Article  Google Scholar 

  29. P. Bajaj, B. Reddy, L. Millet, C. Wei, P. Zorlutuna and G. Bao, Integr. Biol. 3, 897 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Wook Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.J., Lee, J.H., Shin, Y.C. et al. Stimulated myogenic differentiation of C2C12 murine myoblasts by using graphene oxide. Journal of the Korean Physical Society 67, 1910–1914 (2015). https://doi.org/10.3938/jkps.67.1910

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.1910

Keywords

Navigation