Skip to main content
Log in

Detection of IMRT delivery errors based on a simple constancy check of transit dose by using an EPID

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Beam delivery errors during intensity modulated radiotherapy (IMRT) were detected based on a simple constancy check of the transit dose by using an electronic portal imaging device (EPID). Twenty-one IMRT plans were selected from various treatment sites, and the transit doses during treatment were measured by using an EPID. Transit doses were measured 11 times for each course of treatment, and the constancy check was based on gamma index (3%/3 mm) comparisons between a reference dose map (the first measured transit dose) and test dose maps (the following ten measured dose maps). In a simulation using an anthropomorphic phantom, the average passing rate of the tested transit dose was 100% for three representative treatment sites (head & neck, chest, and pelvis), indicating that IMRT was highly constant for normal beam delivery. The average passing rate of the transit dose for 1224 IMRT fields from 21 actual patients was 97.6% ± 2.5%, with the lower rate possibly being due to inaccuracies of patient positioning or anatomic changes. An EPIDbased simple constancy check may provide information about IMRT beam delivery errors during treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Agazaryan, T. D. Solberg and J. J. DeMarco, J. of Appl. Clinic. Med. Phys. 4, 40 (2003).

    Article  Google Scholar 

  2. E. Spezi and D. G. Lewis, Radiother. Oncol. 79, 224 (2006).

    Article  Google Scholar 

  3. D. A. Low, S. Mutic, J. F. Dempsey, R. L. Gerber, W. R. Bosch, C. A. Perez and J. A. Purdy, Radiother. Oncol. 49, 305 (1998).

    Article  Google Scholar 

  4. M. Bucciolini, F. B. Buonamici and M. Casati, Med. Phys. 31, 161 (2004).

    Article  Google Scholar 

  5. D. Létourneau, M. Gulam, D. Yan, M. Oldham and J. W. Wong, Radiother. Oncol. 70, 199 (2004).

    Article  Google Scholar 

  6. P. A. Jursinic and B. E. Nelms, Med. Phys. 30, 870 (2003).

    Article  Google Scholar 

  7. S. Saminathan, R. Manickam, V. Chandraraj and S. S. Supe, J. of Appl. Clinic. Med. Phys. 11, (2010).

    Google Scholar 

  8. W. van Elmpt, L. McDermott, S. Nijsten, M. Wendling, P. Lambin, and B. Mijnheer, Radiother. Oncol. 88, 289 (2008).

    Article  Google Scholar 

  9. R. Bogaerts, A. Van Esch, R. Reymen and D. Huyskens, Radiother. Oncol. 54, 39 (2000).

    Article  Google Scholar 

  10. M. Bakhtiari, L. Kumaraswamy, D. Bailey, S. de Boer, H. Malhotra and M. Podgorsak, Med. Phys. 38, 1366 (2011).

    Article  Google Scholar 

  11. A. Van Esch, T. Depuydt and D. P. Huyskens, Radiother. Oncol. 71, 223 (2004).

    Article  Google Scholar 

  12. L. McDermott, M. Wendling, B. Van Asselen, J. Stroom, J. J. Sonke, M. Van Herk and B. Mijnheer, Med. Phys. 33, 3921 (2006).

    Article  Google Scholar 

  13. H. Jin, F. B. Jesseph and S. Ahmad, Prog. Med. Phys. 25, 65 (2014).

    Article  Google Scholar 

  14. S. L. Berry, C. Polvorosa, S. Cheng, I. Deutsch, K. C. Chao and CS. Wuu, Intern. J. Rad. Oncol. Biol. Phys. 88, 204 (2014).

    Article  Google Scholar 

  15. M. Wendling, R. J. Louwe, L. N. McDermott, J. Sonke, M. van Herk and B. J. Mijnheer, Med. Phys. 33, 259 (2006).

    Article  Google Scholar 

  16. A. Mans, M. Wendling, L. McDermott, J. Sonke, R. Tielenburg, R. Vijlbrief, B. Mijnheer, M. Van Herk and J. Stroom, Med. Phys. 37, 2638 (2010).

    Article  Google Scholar 

  17. S. Nijsten, W. van Elmpt, M. Jacobs, B. Mijnheer, A. Dekker, P. Lambin and A. Minken, Med. Phys. 34, 3872 (2007).

    Article  Google Scholar 

  18. K. L. Pasma, M. Kroonwijk, S. Quint, A. G. Visser and B. J. Heijmen, Intern. J. Rad. Oncol. Biol. Phys. 45, 1297 (1999).

    Article  Google Scholar 

  19. P. Francois, P. Boissard, L. Berger and A. Mazal, Physica Medica 27, 1 (2011).

    Article  Google Scholar 

  20. D. A. Low, W. B. Harms, S. Mutic and J. A. Purdy, Med. Phys. 25, 656 (1998).

    Article  Google Scholar 

  21. S. Deshpande, A. Xing, L. Holloway, P. Metcalfe and P. Vial, J. Appl. Clinic. Med. Phys. 15, (2014).

    Google Scholar 

  22. J. N. Badel, D. Partouche-Sebban, I. Abraham and C. Carrie, Physica Medica 30, 644 (2014).

    Article  Google Scholar 

  23. M. Sabet, P. Rowshanfarzad, F. W. Menk and P. B. Greer, Med. Biol. Engin. Comput. 52, 579 (2014).

    Article  Google Scholar 

  24. K. J. Roxby and J. C. Crosbie, Australasian Phys. Engin. Sci. Med. 33, 51 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myonggeun Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, T.S., Chung, E.J., Son, J. et al. Detection of IMRT delivery errors based on a simple constancy check of transit dose by using an EPID. Journal of the Korean Physical Society 67, 1876–1881 (2015). https://doi.org/10.3938/jkps.67.1876

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.1876

Keywords

Navigation