Skip to main content
Log in

Adsorption of Fe atoms on strongly-correlated NiO(001) surfaces with surface oxygen vacancies: Oxide support effects

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The adsorption properties of Fe atoms on strongly-correlated NiO(001) surfaces with surface O vacancies (F s centers) were studied by using density functional theory combined with on-site Coulomb repulsion U. The adsorption of Fe on the F s center of NiO(001) is 0.57 eV more stable than that on the regular surface O sites of NiO(001). This demonstrates the significant role of the F s centers in the adsorption of Fe atoms and the subsequent growth of Fe clusters on NiO(001) surfaces. This is in sharp contrast with the behavior observed for Fe atoms adsorbed on MgO(001) with F s centers, where the surface O vacancies do not play a role as nucleation sites for the growth of Fe clusters due to the blind nature of Fe atoms to O vacancies. An analysis of the electronic properties and charge rearrangement for adsorption of the Fe atoms on defect-free and O-defective NiO(001) was performed. The charge states of the Fe atoms on strongly-correlated NiO(001) exhibit features different from those of the Fe atoms on MgO(001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. C. Bond and D. T. Thompson, Gold Bull. 33, 41 (2000).

    Article  Google Scholar 

  2. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J. Catal. 115, 301 (1989).

    Article  Google Scholar 

  3. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. Genet and B. Delmon, J. Catal. 144, 175 (1993).

    Article  Google Scholar 

  4. J. Jeon, A. Soon, J. N. Yeo, J. Park, S. Hong, K. Cho and B. D. Yu, J. Phys. Soc. Jpn. 81, 054601 (2012).

    Article  ADS  Google Scholar 

  5. J. Jeon, A. Soon, J. Park, S. Hong, K. Cho and B. D. Yu, J. Phys. Soc. Jpn. 82, 034603 (2013).

    Article  ADS  Google Scholar 

  6. T. Urano and T. Kanaji, J. Phys. Soc. Jpn. 57, 3403 (1988).

    Article  ADS  Google Scholar 

  7. W. H. Butler, X. G. Zhang, T. C. Schulthess and J. M. MacLaren, Phys. Rev. B 63, 054416 (2001).

    Article  ADS  Google Scholar 

  8. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki and K. Ando, Nature Mater. 3, 868 (2004).

    Article  ADS  Google Scholar 

  9. S. Yuasa, J. Phys. Soc. Jpn. 77, 031001 (2008).

    Article  ADS  Google Scholar 

  10. B. D. Yu and J. S. Kim, Phys. Rev. B 73, 125408 (2006).

    Article  ADS  Google Scholar 

  11. J. N. Yeo, G. M. Jee, B. D. Yu and B. C. Choi, J. Korean Phys. Soc. 52, 1938 (2008).

    Article  ADS  Google Scholar 

  12. J. Park and B. D. Yu, Phys. Rev. B 83, 144431 (2011).

    Article  ADS  Google Scholar 

  13. M. Haruta, Catal. Today 36, 153 (1997).

    Article  Google Scholar 

  14. M. Valden, X. Lai and D. W. Goodman, Science 281, 1647 (1998).

    Article  ADS  Google Scholar 

  15. M. S. Chen and D. W. Goodman, Science 306, 252 (2004).

    Article  ADS  Google Scholar 

  16. B. Yoon, H. Häkkinen, U. Landman, A. S. Wörz, J. M. Antonietti, S. Abbet, K. Judai and U. Heiz, Science 307, 403 (2005).

    Article  ADS  Google Scholar 

  17. J. Park, B. D. Yu and H. Kim, Phys. Rev. B 79, 233407 (2009).

    Article  ADS  Google Scholar 

  18. G. Pacchioni, L. Giordano and M. Baistrocchi, Phys. Rev. Lett. 94, 226104 (2005).

    Article  ADS  Google Scholar 

  19. P. Frondelius, H. Häkkinen and K. Honkala, New J. Phys. 9, 339 (2007).

    Article  ADS  Google Scholar 

  20. J. Park and B. D. Yu, J. Phys. Soc. Jpn. 79, 074718 (2010).

    Article  ADS  Google Scholar 

  21. A. V. Matveev, K. M. Neyman, I. V. Yudanov and N. Rösch, Surf. Sci. 426, 123 (1999).

    Article  ADS  Google Scholar 

  22. A. Bogicevic and D. R. Jennison, Surf. Sci. 437, L741 (1999).

    Article  ADS  Google Scholar 

  23. J. Park and B. D. Yu, J. Korean Phys. Soc. 53, 1976 (2008).

    Google Scholar 

  24. J. Jeon and B. D. Yu, J. Korean Phys. Soc. 62, 79 (2013).

    Article  ADS  Google Scholar 

  25. J. Jeon and B. D. Yu, J. Korean Phys. Soc. 64, 554 (2014).

    Article  ADS  Google Scholar 

  26. G. Barcaro and A. Fortunelli, New J. Phys. 9, 22 (2007).

    Article  ADS  Google Scholar 

  27. Y.-R. Jang, J. Park and B. D. Yu, J. Phys. Soc. Jpn. 79, 124703 (2010).

    Article  ADS  Google Scholar 

  28. A. Sanchez, S. Abbet, U. Heiz, W. D. Schneider, H. Häkkinen, R. N. Barnett and U. Landman, J. Phys. Chem. A 103, 9573 (1999).

    Article  Google Scholar 

  29. J. Park, I. Park and B. D. Yu, J. Korean Phys. Soc. 54, 109 (2009).

    Article  ADS  Google Scholar 

  30. B. D. Yu, Phys. Rev. B 71, 193403 (2005).

    Article  ADS  Google Scholar 

  31. S. Fernandez, A. Markovits and C. Minot, Chem. Phys. Lett. 463, 106 (2008).

    Article  ADS  Google Scholar 

  32. S. Fernandez, A. Markovits and C. Minot, J. Phys. Chem. C 112, 16491 (2008).

    Article  Google Scholar 

  33. C. N. R. Rao and B. Raveau, Transition metal oxides (VCH, New York, 1995).

    Google Scholar 

  34. Z. Zou, J. Ye, K. Sayama and H. Arakawa, Nature 414, 625 (2001).

    Article  ADS  Google Scholar 

  35. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  36. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  37. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  38. A. I. Liechtenstein, V. I. Anisimov and J. Zaanen, Phys. Rev. B 52, R5467 (1995).

    Article  ADS  Google Scholar 

  39. S. L. Dudarev, A. I. Liechtenstein, M. R. Castell, G. A. D. Briggs and A. P. Sutton, Phys. Rev. B 56, 4900 (1997).

    Article  ADS  Google Scholar 

  40. A. Rohrbach, J. Hafner and G. Kresse, Phys. Rev. B 69, 075413 (2004).

    Article  ADS  Google Scholar 

  41. F. Cinquini, L. Giordano and G. Pacchioni, Theor. Chem. Acc. 120, 575 (2008).

    Article  Google Scholar 

  42. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  43. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  44. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  45. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  46. B. E. F. Fender, A. J. Jacobson and F. A. Wedgwood, J. Chem. Phys. 48, 990 (1968).

    Article  ADS  Google Scholar 

  47. A. K. Cheetham and D. A. O. Hope, Phys. Rev. B 27, 6964 (1983).

    Article  ADS  Google Scholar 

  48. G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 53, 2339 (1984).

    Article  ADS  Google Scholar 

  49. A. Fujimori and F. Minami, Phys. Rev. B 30, 957 (1984).

    Article  ADS  Google Scholar 

  50. J. Jeon and B. D. Yu, J. Phys. Soc. Jpn. 83, 113602 (2014).

    Article  ADS  Google Scholar 

  51. J. Jeon and B. D. Yu, Curr. Appl. Phys. 15, 98 (2015).

    Article  ADS  Google Scholar 

  52. J. Jeon, B. D. Yu and S. Hyun, Curr. Appl. Phys. 15, 679 (2015).

    Article  ADS  Google Scholar 

  53. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, New York, New York, 1990).

    Google Scholar 

  54. G. Henkelman, A. Arnaldsson and H. Jónsson, Comput. Mater. Sci. 36, 354 (2006).

    Article  Google Scholar 

  55. W. Tang, E. Sanville and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Deok Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, J., Yu, B.D. Adsorption of Fe atoms on strongly-correlated NiO(001) surfaces with surface oxygen vacancies: Oxide support effects. Journal of the Korean Physical Society 67, 1798–1803 (2015). https://doi.org/10.3938/jkps.67.1798

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.1798

Keywords

Navigation