Abstract
The adsorption properties of Fe atoms on strongly-correlated NiO(001) surfaces with surface O vacancies (F s centers) were studied by using density functional theory combined with on-site Coulomb repulsion U. The adsorption of Fe on the F s center of NiO(001) is 0.57 eV more stable than that on the regular surface O sites of NiO(001). This demonstrates the significant role of the F s centers in the adsorption of Fe atoms and the subsequent growth of Fe clusters on NiO(001) surfaces. This is in sharp contrast with the behavior observed for Fe atoms adsorbed on MgO(001) with F s centers, where the surface O vacancies do not play a role as nucleation sites for the growth of Fe clusters due to the blind nature of Fe atoms to O vacancies. An analysis of the electronic properties and charge rearrangement for adsorption of the Fe atoms on defect-free and O-defective NiO(001) was performed. The charge states of the Fe atoms on strongly-correlated NiO(001) exhibit features different from those of the Fe atoms on MgO(001).
Similar content being viewed by others
References
G. C. Bond and D. T. Thompson, Gold Bull. 33, 41 (2000).
M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J. Catal. 115, 301 (1989).
M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. Genet and B. Delmon, J. Catal. 144, 175 (1993).
J. Jeon, A. Soon, J. N. Yeo, J. Park, S. Hong, K. Cho and B. D. Yu, J. Phys. Soc. Jpn. 81, 054601 (2012).
J. Jeon, A. Soon, J. Park, S. Hong, K. Cho and B. D. Yu, J. Phys. Soc. Jpn. 82, 034603 (2013).
T. Urano and T. Kanaji, J. Phys. Soc. Jpn. 57, 3403 (1988).
W. H. Butler, X. G. Zhang, T. C. Schulthess and J. M. MacLaren, Phys. Rev. B 63, 054416 (2001).
S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki and K. Ando, Nature Mater. 3, 868 (2004).
S. Yuasa, J. Phys. Soc. Jpn. 77, 031001 (2008).
B. D. Yu and J. S. Kim, Phys. Rev. B 73, 125408 (2006).
J. N. Yeo, G. M. Jee, B. D. Yu and B. C. Choi, J. Korean Phys. Soc. 52, 1938 (2008).
J. Park and B. D. Yu, Phys. Rev. B 83, 144431 (2011).
M. Haruta, Catal. Today 36, 153 (1997).
M. Valden, X. Lai and D. W. Goodman, Science 281, 1647 (1998).
M. S. Chen and D. W. Goodman, Science 306, 252 (2004).
B. Yoon, H. Häkkinen, U. Landman, A. S. Wörz, J. M. Antonietti, S. Abbet, K. Judai and U. Heiz, Science 307, 403 (2005).
J. Park, B. D. Yu and H. Kim, Phys. Rev. B 79, 233407 (2009).
G. Pacchioni, L. Giordano and M. Baistrocchi, Phys. Rev. Lett. 94, 226104 (2005).
P. Frondelius, H. Häkkinen and K. Honkala, New J. Phys. 9, 339 (2007).
J. Park and B. D. Yu, J. Phys. Soc. Jpn. 79, 074718 (2010).
A. V. Matveev, K. M. Neyman, I. V. Yudanov and N. Rösch, Surf. Sci. 426, 123 (1999).
A. Bogicevic and D. R. Jennison, Surf. Sci. 437, L741 (1999).
J. Park and B. D. Yu, J. Korean Phys. Soc. 53, 1976 (2008).
J. Jeon and B. D. Yu, J. Korean Phys. Soc. 62, 79 (2013).
J. Jeon and B. D. Yu, J. Korean Phys. Soc. 64, 554 (2014).
G. Barcaro and A. Fortunelli, New J. Phys. 9, 22 (2007).
Y.-R. Jang, J. Park and B. D. Yu, J. Phys. Soc. Jpn. 79, 124703 (2010).
A. Sanchez, S. Abbet, U. Heiz, W. D. Schneider, H. Häkkinen, R. N. Barnett and U. Landman, J. Phys. Chem. A 103, 9573 (1999).
J. Park, I. Park and B. D. Yu, J. Korean Phys. Soc. 54, 109 (2009).
B. D. Yu, Phys. Rev. B 71, 193403 (2005).
S. Fernandez, A. Markovits and C. Minot, Chem. Phys. Lett. 463, 106 (2008).
S. Fernandez, A. Markovits and C. Minot, J. Phys. Chem. C 112, 16491 (2008).
C. N. R. Rao and B. Raveau, Transition metal oxides (VCH, New York, 1995).
Z. Zou, J. Ye, K. Sayama and H. Arakawa, Nature 414, 625 (2001).
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
A. I. Liechtenstein, V. I. Anisimov and J. Zaanen, Phys. Rev. B 52, R5467 (1995).
S. L. Dudarev, A. I. Liechtenstein, M. R. Castell, G. A. D. Briggs and A. P. Sutton, Phys. Rev. B 56, 4900 (1997).
A. Rohrbach, J. Hafner and G. Kresse, Phys. Rev. B 69, 075413 (2004).
F. Cinquini, L. Giordano and G. Pacchioni, Theor. Chem. Acc. 120, 575 (2008).
G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
B. E. F. Fender, A. J. Jacobson and F. A. Wedgwood, J. Chem. Phys. 48, 990 (1968).
A. K. Cheetham and D. A. O. Hope, Phys. Rev. B 27, 6964 (1983).
G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 53, 2339 (1984).
A. Fujimori and F. Minami, Phys. Rev. B 30, 957 (1984).
J. Jeon and B. D. Yu, J. Phys. Soc. Jpn. 83, 113602 (2014).
J. Jeon and B. D. Yu, Curr. Appl. Phys. 15, 98 (2015).
J. Jeon, B. D. Yu and S. Hyun, Curr. Appl. Phys. 15, 679 (2015).
R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, New York, New York, 1990).
G. Henkelman, A. Arnaldsson and H. Jónsson, Comput. Mater. Sci. 36, 354 (2006).
W. Tang, E. Sanville and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jeon, J., Yu, B.D. Adsorption of Fe atoms on strongly-correlated NiO(001) surfaces with surface oxygen vacancies: Oxide support effects. Journal of the Korean Physical Society 67, 1798–1803 (2015). https://doi.org/10.3938/jkps.67.1798
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.3938/jkps.67.1798