Skip to main content
Log in

Enhanced bandwidth of a microstrip antenna using a parasitic mushroom-like metamaterial structure for multi-robot cooperative navigation

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The broadband design of a microstrip patch antenna is presented and experimentally studied for multi-robot cooperation. A parasitic mushroom-like metamaterial (MTM) patch close to a microstrip top patch is excited through gap-coupling, thereby producing a resonance frequency. Because of the design, the resonance frequency of the parasitic MTM patch is adjacent to that of the main patch, and the presented antenna can achieve an enhanced bandwidth of 450 MHz, which is about two times the bandwidth of a conventional patch antenna without the MTM parasitic patch. The error rate of packet transmissions for measuring the distance between a leader robot and a follower robot was also improved by almost two-fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-G. Kim, J. An, K.-D. Kim, Z.-G. Xu and S.-G. Lee, Advances in swarm intelligence Lecture notes in Computer Science, Volume 6729, Xth ed (Springer, Berlin, 99, 2011).

    Book  Google Scholar 

  2. A. K. Sadek, Z. Han and K. J. R. Liu, IEEE Trans. Mobile Computing 9, 505 (2010).

    Article  Google Scholar 

  3. S. K. Sharma, N. Jacob and L. Shafai, Proc. IEEE AP-S Int Symp., 390 (2002).

  4. H. G. Akhavan and D. M. Syahkal, Electron. Lett. 30, 1902 (1994).

    Article  Google Scholar 

  5. T. Huynh and K. F. Lee, Electron. Lett. 31, 1310 (1995).

    Article  Google Scholar 

  6. R. Q. Lee, K. F. Lee and J. Bobinchak, Electron. Lett. 23, 1070 (1987).

    Article  ADS  Google Scholar 

  7. A. Yu and X. Zhang, AP-Society Int. Symposium IEEE, 228 (2002).

    Google Scholar 

  8. P. B. Parmar, B. J. Makwana and M. A. Jajal, Int. Conf. Comm. Syst. Network Technol., 53 (2012).

    Google Scholar 

  9. C. Caloz and T. Itoh, IEEE Microwave Wireless Comp. Lett. 14, 274 (2004).

    Article  Google Scholar 

  10. F. P. Casares-Miranda, C. Camacho-penalosa and C. Caloz, IEEE Trans. Antennas Propagat. 54, 2292 (2006).

    Article  ADS  Google Scholar 

  11. C.-H. Lee, J. Lee, D.-S. Woo and K.-W. Kim, J. Korean Physical Soc. 61, 1633 (2012).

    Article  ADS  Google Scholar 

  12. S. Kahng and G. Jang, Journal of Electromagnetic Engineering and Science 13, 263 (2013).

    Article  Google Scholar 

  13. L. Liang, C. H. Liang and X. Chen, Microw. Opt. Technol. Lett. 50, 2167 (2008).

    Article  Google Scholar 

  14. D. F. Sievenpiper, Ph.D. dissertation, UCLA, 1999.

    Google Scholar 

  15. F. Yang and Y. R. Samii, IEEE Trans. Antennas Propagat. 51, 2936 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonghun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CH., Lee, J., Kim, YG. et al. Enhanced bandwidth of a microstrip antenna using a parasitic mushroom-like metamaterial structure for multi-robot cooperative navigation. Journal of the Korean Physical Society 66, 92–95 (2015). https://doi.org/10.3938/jkps.66.92

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.92

Keywords

Navigation