Skip to main content

Characteristics of a nickel thin film and formation of nickel silicide by using remote plasma atomic layer deposition with Ni(iPr-DAD)2

Abstract

In this study, the characteristics of a thin nickel film deposited by using remote plasma atomic layer deposition (RPALD) on a p-type Si substrate and formation of nickel silicide by using rapid thermal annealing were determined. Bis(1,4-di-isopropyl-1,3-diazabutadienyl)nickel, (Ni(iPr-DAD)2) was used as the Ni precursor and an ammonia plasma was used as a reactant. This was the first attempt to deposit a thin Ni film using by Ni(iPr-DAD)2 as a precursor for the ALD process. The Ni film that was deposited by using RPALD at a growth rate of around 2.2 Å/cycle at 250°C showed a very low resistivity of 33 μΩ·cm with a total impurity concentration of around 10 at.%. The impurities in the thin film, carbon and nitrogen, were existed in the forms of C–C and C–N bonding states. The potential for removing impurities by comparing of experimental conditions, namely, the process temperature and pressure. The nitrogen impurity could be removed by using thermal desorption during each ALD cycle, and the carbon impurity could be reduced by optimizing the process pressure, which is directly related to the mean free path in the NH3 plasma. After Ni deposition, nickel silicide was formed by rapid thermal annealing (RTA) in a vacuum ambient for 1 minute. Nickel-silicide layers from obtained by used the ALD of Ni and obtained by used of the PVD Ni annealed at temperatures from 500 to 900°C. NiSi obtained by used the ALD of Ni showed better thermal stability due to the contributions of small amounts of carbon and nitrogen in the as-deposited Ni thin film. Degradation of the silicide layer was effectively suppressed by using the ALD of ALD Ni.

This is a preview of subscription content, access via your institution.

References

  1. R. Siu, D. S. Williams and W. T. Lynch, J. Appl. Phys. 63, 1990 (1988).

    Article  ADS  Google Scholar 

  2. H. C. Cheng, M. H. Juang, C. T. Lin and L. M. Huang, IEEE Electron Device Lett. 15, 342 (1994).

    Article  ADS  Google Scholar 

  3. K. Goto, A. Fushida, J. Watanabe, T. Sukegawa, Y. Tada, T. Nakamura, T. Yamazaki and T. Sugii, IEEE Trans. Electron Devices 46, 117 (1999).

    Article  ADS  Google Scholar 

  4. Q. F. Wang, C. M. Osburn, P. L. Smith, C. A. Canovai, G. E. McGuire, J. Electrochem. Soc. 140, 200 (1993).

    Article  Google Scholar 

  5. J. B. Lasky, J. S. Nakos, O. J. Cain and P. J. Geiss, IEEE Trans. Electron Devices 38, 262 (1991).

    Article  ADS  Google Scholar 

  6. J. P. Gambino and E. G. Colgan, Mater. Chem. Phys. 52, 99 (1998).

    Article  Google Scholar 

  7. H. Iwai, T. Ohguro and S.I. Ohmi, Microelectron. Eng. 60, 157 (2002).

    Article  Google Scholar 

  8. T. Morimoto et al., IEEE Trans. Electron Devices 42, 915 (1995).

    Article  ADS  Google Scholar 

  9. O. Lühn, C. Van Hoof, W. Ruythooren and J. P. Celis, Microelectron. Eng. 85, 1947 (2008).

    Article  Google Scholar 

  10. H. B. R. Lee, S. H. Bang, W. H. Kim, G. H. Gu, Y. K. Lee, T.M. Chung, C. G. Kim, C. G. Park and H. J. Kim, Jpn. J. Appl. Phys. 49, 05FA11 (2010).

  11. C. M. Yang et al., Jpn. J. Appl. Phys. 46, 1981 (2007).

    Article  ADS  Google Scholar 

  12. K. W. Do et al., Jpn. J. Appl. Phys. 45, 2975 (2006).

    Article  ADS  Google Scholar 

  13. R. Dedryvere, S. Laruelle, S. Grugeon, P. Poizot, D. Gonbeau and J. M. Tarascon, Chem. Mater. 16, 1056 (2004).

    Article  Google Scholar 

  14. D. Banerjee and H. W. Nesbitt, Geochim. Cosmochim. Acta 65, 1703 (2001).

    Article  ADS  Google Scholar 

  15. C. Pevida, M. G. Plaza, B. Arias, J. Fermoso, F. Rubiera and J. J. Pis, Appl. Surf. Sci. 254, 7165 (2008).

    Article  ADS  Google Scholar 

  16. L. N. Bui and M. Thompson, Analyst 118, 463 (1993).

    Article  ADS  Google Scholar 

  17. F. Fujimoto and K. Ogata, Jpn. J. Appl. Phys. 32, 420 (1993).

    Article  ADS  Google Scholar 

  18. Z. M. Ren, Y. C. Du, Y. Qiu, J. D. Wu, Z. F. Ying, X. X. Xiong and F.-M. Li, Phys. Rev. B 51, 5274 (1995).

    Article  ADS  Google Scholar 

  19. D. E. Gardin and G. A. Somorjai, J. Phys. Chem. 96, 9424 (1992).

    Article  Google Scholar 

  20. J. C. Hemminger, E. L. Muetterties and G. A. Somorjai, J. Am. Chem. Soc. 101, 62 (1979).

    Article  Google Scholar 

  21. S. I. Kim, S. R. Lee, K. M. Ahn and B. T. Ahn, J. Electrochem. Soc. 157, H231 (2010).

  22. G. Utlu, N. Artunc and S. Selvi, Mater. Chem. Phys. 132, 421 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhan Yuh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Jang, W., Park, J. et al. Characteristics of a nickel thin film and formation of nickel silicide by using remote plasma atomic layer deposition with Ni(iPr-DAD)2 . Journal of the Korean Physical Society 66, 821–827 (2015). https://doi.org/10.3938/jkps.66.821

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.821

Keywords

  • Atomic layer deposition
  • Nickel
  • Remote plasma
  • Ni(iPr-DAD)2
  • Nickel silicide