Journal of the Korean Physical Society

, Volume 66, Issue 4, pp 535–538 | Cite as

Dark current improvement of the type-II InAs / GaSb superlattice photodetectors by using a gate bias control

  • Ha Sul Kim
  • S. Myers
  • B. Klein
  • A. Kazemi
  • S. Krishna
  • Jun Oh Kim
  • Sang Jun Lee
Letters

Abstract

The dark current of a type-II InAs/GaSb strained layer superlattice photodiode with an n-i-p structure is reduced by using an active gate bias technique. To make the gate structure on the mesa sidewall of the photodiode, we used Si3N4 and Ti/Au as a dielectric film and a gate metal, respectively. At 77 K, the dark current density of the photodiode with a gate bias (VG = −30 V) applied on the mesa side wall is reduced by more than one order of magnitude compared to the dark current density at zero gate bias. At 77 K, the product of the dynamic differential resistance and the area at a gate bias of −30 V shows a 12 times improvement compared to the same measurement at zero gate bias.

Keywords

Infrared Photodetector Superlattice InAs GaSb Passivation Dark current 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Rogalsk, Opto-Electron. Rev. 20, 279 (2012).ADSGoogle Scholar
  2. [2]
    H. S. Kim et al., Appl. Phys. Lett. 92, 183502 (2008).CrossRefADSGoogle Scholar
  3. [3]
    E. K. Huang, D. Hoffman, B. M. Nguyen, P. Y. Delaunay and M. Razeghi, Appl. Phys. Lett. 94, 053506 (2009).CrossRefADSGoogle Scholar
  4. [4]
    D. Z. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen and S. D. Gunapala, Appl. Phys. Lett. 95, 023508 (2009).CrossRefADSGoogle Scholar
  5. [5]
    N. Gautam, S. Myers, A. V. Barve, B. Klein, E. P. Smith, D. R. Rhiger, L. R. Dawson and S. Krishna, Appl. Phys. Lett. 101, 021106 (2012).CrossRefADSGoogle Scholar
  6. [6]
    H. S. Kim, E. Plis, N. Gautam, S. Myers, Y. Sharma, L. R. Dawson and S. Krishna, Appl. Phys. Lett. 97, 143512 (2010).CrossRefADSGoogle Scholar
  7. [7]
    A. Hood, M. Razeghi, E. H. Aifer and G. J. Brown, Appl. Phys. Lett. 90, 233513 (2007).CrossRefADSGoogle Scholar
  8. [8]
    O. Salihoglu, A. Muti, K. Kutluer, T. Tansel, R. Turan, C. Kocabas and A. Aydinli, J. Appl. Phys. 111, 074509 (2012).CrossRefADSGoogle Scholar
  9. [9]
    A. Hood, M. Razeghi, E. H. Aifer and G. J. Brown, Appl. Phys. Lett. 87, 151113 (2005).CrossRefADSGoogle Scholar
  10. [10]
    G. Chen, E. K. Huang, A. M. Hoang, S. Bogdanov, S. R. Darvish and M. Razeghi, Appl. Phys. Lett. 101, 213501 (2012).CrossRefADSGoogle Scholar
  11. [11]
    P. Christol, L. Konczewicz, Y. Cuminal, H. Aït-Kaci, J. B. Rodriguez, and A. Joullié, Phys. Stat. Sol. (c) 4, 1494 (2007).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2015

Authors and Affiliations

  • Ha Sul Kim
    • 1
  • S. Myers
    • 2
  • B. Klein
    • 2
  • A. Kazemi
    • 2
  • S. Krishna
    • 2
  • Jun Oh Kim
    • 3
  • Sang Jun Lee
    • 3
  1. 1.Department of PhysicsChonnam National UniversityGwangjuKorea
  2. 2.Center for High Technology MaterialsUniversity of New MexicoAlbuquerqueUSA
  3. 3.Division of Industrial MetrologyKorea Research Institute of Standards and ScienceDaejeonKorea

Personalised recommendations