Skip to main content
Log in

Van der Waals correlation between two 4He monolayers on the opposite sides of graphene

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Path-integral Monte Carlo calculations have been performed to study the correlation between two 4He monolayers adsorbed on opposite sides of a graphene sheet. Here, the 4He-substrate interaction is described by the pairwise sum of the 4He-C interatomic potentials. We employ two different anisotropic 4He-C pair potentials proposed to fit the helium scattering data on a graphite surface, namely, a 6–12 Lennard-Jones potential and a Yukawa-6 potential. With the Lennard-Jones substrate potential, we do not observe any noticeable correlation between two oppositeside 4He monolayers, which is consistent with the prediction of the previous theoretical studies based on the same substrate potential. When the Yukawa-6 substrate potential is used, however, two incommensurate triangular solids, which are realized at the first-layer completion density of 0.12 Å -2, are found to favor an AA stacking order, two triangular lattices on top of each other, over an AB stacking. Finally, the effects of this interlayer correlation on the formation of stable mobile vacancies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Zimmerli, G. Mistura and M. H. W. Chan, Phys. Rev. Lett. 68, 60 (1992).

    Article  ADS  MATH  Google Scholar 

  2. D. S. Greywall and P. A. Busch, Phys. Rev. Lett. 67, 3535 (1991).

    Article  ADS  Google Scholar 

  3. P. A. Crowell and J. D. Reppy, Phys. Rev. Lett. 70, 3291 (1993).

    Article  ADS  Google Scholar 

  4. P. A. Crowell and J. D. Reppy, Phys. Rev. B 53, 2701 (1996).

    Article  ADS  Google Scholar 

  5. M. E. Pierce and E. Manousakis, Phys. Rev. Lett. 81, 156 (1998).

    Article  ADS  Google Scholar 

  6. M. E. Pierce and E. Manousakis, Phys. Rev. B 59, 3802 (1999).

    Article  ADS  MATH  Google Scholar 

  7. P. Corboz, M. Boninsegni, L. Pollet and M. Troyer, Phys. Rev. B 78, 245414 (2008).

    Article  ADS  Google Scholar 

  8. D. S. Greywall, Phys. Rev. B 47, 309 (1993).

    Article  ADS  Google Scholar 

  9. S. Nakamura, K. Matsui, T. Matsui and H. Fukuyama, arXiv:1406.4388 (2014).

    Google Scholar 

  10. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Frisov, Science 306, 666 (2004).

    Article  ADS  Google Scholar 

  11. O. Leenaerts, B. Partoens and F. M. Peeters, Appl. Plys. Lett. 93, 193107 (2008).

    Article  ADS  Google Scholar 

  12. M. C. Gordillo and J. Boronat, Phys. Rev. Lett. 102, 085303 (2009).

    Article  ADS  Google Scholar 

  13. M. C. Gordillo, C. Cazorla and J. Boronat, Phys. Rev. B 83, 121406(R) (2011).

    Article  ADS  MATH  Google Scholar 

  14. Y. Kwon and D. M. Ceperley, Phys. Rev. B 85, 224501 (2012).

    Article  ADS  Google Scholar 

  15. W. E. Carlos and M. W. Cole, Surf. Sci. 91, 339 (1980).

    Article  ADS  Google Scholar 

  16. J. Happacher, P. Corboz, M. Boninsegni and L. Pollet, Phys. Rev. B 87, 094514 (2013).

    Article  ADS  Google Scholar 

  17. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth and S. Roth, Nature 446, 60 (2007).

    Article  ADS  MATH  Google Scholar 

  18. L. V. Markić, P. Stipanović, I. Bešlić and R. E. Zillich, Phys. Rev. B 88, 125416 (2013).

    Article  ADS  Google Scholar 

  19. M. C. Gordillo, Phys. Rev. B 89, 155401 (2014).

    Article  ADS  Google Scholar 

  20. R. A. Aziz, M. J. Slaman, A. Koide, A. R. Allnatt and W. J. Meath, Mol. Phys. 77, 321 (1992).

    Article  ADS  Google Scholar 

  21. D. M. Ceperley and E. L. Pollock, Phys. Rev. Lett. 56, 351 (1986).

    Article  ADS  Google Scholar 

  22. D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).

    Article  ADS  MATH  Google Scholar 

  23. R. E. Zillich, F. Paesani, Y. Kwon and K. B. Whaley, J. Chem. Phys. 123, 114301 (2005).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongkyung Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, Y. Van der Waals correlation between two 4He monolayers on the opposite sides of graphene. Journal of the Korean Physical Society 66, 1856–1861 (2015). https://doi.org/10.3938/jkps.66.1856

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1856

Keywords

Navigation