Skip to main content
Log in

Low-temperature conformational transition of a square-lattice polymer

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We study the low-temperature transition of polymers with attractive nearest-neighbor interactions on a square lattice. Measuring the specific heat obtained by using the exact number of possible conformations for each energy value, we find a peak in the low-temperature region, distinct from the peak corresponding to the coil-globule transition. We find that the low-temperature peak becomes prominent for specific polymer lengths called the magic lengths, for which the ground state forms a square or a rectangle. The low-temperature peaks for magic lengths are more intense than those for other lengths and appear at lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Flory, J. Chem. Phys. 17, 303 (1949).

    Article  ADS  Google Scholar 

  2. P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1967).

    Google Scholar 

  3. H. S. Chan and K. A. Dill, Annu. Rev. Biophys. Biophys. Chem. 20, 447 (1991).

    Article  Google Scholar 

  4. P.-G. de Gennes, J. Physique Lett. 36, 55 (1975).

    Article  Google Scholar 

  5. R. B. Griffiths, Phys. Rev. B 7, 545 (1973).

    Article  ADS  Google Scholar 

  6. M. Plischke and B. Bergersen, Equilibrium Statistical Physics, 3rd ed. (World Scientific, Singapore, 2006).

    Book  Google Scholar 

  7. P.-G. de Gennes, J. Physique Lett. 39, 299 (1978).

    Article  Google Scholar 

  8. Y. Zhou, C. K. Hall and M. Karplus, Phys. Rev. Lett. 77, 2822 (1996).

    Article  ADS  Google Scholar 

  9. N. A. Alves and U. H. E. Hansmann, Phys. Rev. Lett. 84, 1836 (2000); Physica A 292, 509 (2001).

    Article  ADS  Google Scholar 

  10. F. Rampf, W. Paul and K. Binder, Europhys. Lett. 70, 628 (2005).

    Article  ADS  Google Scholar 

  11. F. Rampf, K. Binder and W. Paul, J. Polym. Sci.: Part B: Polym. Phys. 44, 2542 (2006).

    Article  ADS  Google Scholar 

  12. D. F. Parsons and D. R. M. Williams, J. Chem. Phys. 124, 221103 (2006); Phys. Rev. E 74, 041804 (2006).

    Article  ADS  Google Scholar 

  13. W. Paul, T. Strauch, F. Rampf and K. Binder, Phys. Rev. E 75, 060801(R) (2007).

    Article  ADS  Google Scholar 

  14. T. Vogel, M. Bachmann and W. Janke, Phys. Rev. E 76, 061803 (2007).

    Article  ADS  Google Scholar 

  15. J. H. Lee, S.-Y. Kim and J. Lee, Phys. Rev. E 86, 011802 (2012).

    Article  ADS  Google Scholar 

  16. C.-N. Chen, Y.-H. Hsieh and C.-K. Hu, Europhys. Lett. 104, 20005 (2013).

    Article  ADS  Google Scholar 

  17. G. Chikenji, M. Kikuchi and Y. Iba, Phys. Rev. Lett. 83, 1886 (1999).

    Article  ADS  Google Scholar 

  18. M. Bachmann and W. Janke, Phys. Rev. Lett. 91, 208105 (2003); Comput. Phys. Commun. 169, 111 (2005).

    Article  ADS  Google Scholar 

  19. H. S. Chan and K. A. Dill, Macromolecules 22, 4559 (1989).

    Article  ADS  Google Scholar 

  20. J. H. Lee, S.-Y. Kim and J. Lee, Comput. Phys. Commun. 182, 1027 (2011).

    Article  ADS  Google Scholar 

  21. J. Lee, J. Korean Phys. Soc. 44, 617 (2004).

    Article  ADS  Google Scholar 

  22. A. G. Cunha-Netto, R. Dickman and A. A. Caparica, Comput. Phys. Commun. 180, 583 (2009).

    Article  ADS  Google Scholar 

  23. J. H. Lee, S.-Y. Kim and J. Lee, J. Chem. Phys. 133, 114106 (2010).

    Article  ADS  Google Scholar 

  24. J. H. Lee, S.-Y. Kim and J. Lee, J. Chem. Phys. 135, 204102 (2011).

    Article  ADS  Google Scholar 

  25. J. H. Lee, S.-Y. Kim and J. Lee, Phys. Rev. E 87, 052601 (2013).

    Article  ADS  Google Scholar 

  26. J. H. Lee, S.-Y. Kim and J. Lee, J. Phys.: Conf. Ser. 454, 012083 (2013).

    ADS  Google Scholar 

  27. S. Caracciolo, M. Gherardi, M. Papinutto and A. Pelissetto, J. Phys. A 44, 115004 (2011).

    Article  ADS  Google Scholar 

  28. M. Ponmurugan and S. V. M. Satyanarayana, J. Stat. Mech. P06010 (2012).

    Google Scholar 

  29. N. T. Rodrigues and T. J. Oliveira, J. Phys. A 47, 405002 (2014).

    Article  Google Scholar 

  30. R. Dickman and W. C. Schieve, J. Physique 45, 1727 (1984).

    Article  Google Scholar 

  31. F. Calvo, J. P. K. Doye and D. J. Wales, J. Chem. Phys. 116, 2642 (2002).

    Article  ADS  Google Scholar 

  32. S. Schnabel, T. Vogel, M. Bachmann and W. Janke, Chem. Phys. Lett. 476, 201 (2009).

    Article  ADS  Google Scholar 

  33. D. T. Seaton, T. Wüst and D. P. Landau, Phys. Rev. E 81, 011802 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Lee, J. & Kim, SY. Low-temperature conformational transition of a square-lattice polymer. Journal of the Korean Physical Society 66, 1797–1801 (2015). https://doi.org/10.3938/jkps.66.1797

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1797

Keywords

Navigation