Skip to main content
Log in

Relaxation and phase-transition characteristics of relaxor ferroelectric potassium lithium niobate

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The electric modulus relaxations were considered to be coupled phenomena between the polarization fluctuations < P 2 > due to local symmetry breaking and ionic hopping through nearest neighbor sites. The Nb-rich potassium lithium niobate (K5.595Li3.125Nb11.28O30) crystals exhibited a ferroelectric diffused phase transition around the dielectric maximum temperature T max = 350. The electric modulus relaxations were characterized by using the Cole-Davidson distribution of the electric modulus relaxation times at frequencies ranging from 100 Hz to 1 MHz. Although the lattice constants along the a-axes and the c-axes and the tetragonal unit cell volume showed linear expansions with increasing temperature T, the axial ratio c/a decreased with increasing T at temperatures below the Burn’s temperature TB. The dielectric relaxation accompanied the high ionic conduction in the temperature range above T. The ac conductivity σ'(ω) was analyzed by using the formulae, where ω O is the crossover frequency. It was considered that a double-Arrhenius behavior of the dc conductivity σ dc at temperatures around the Burn’s temperature T B was suspected of thermally activated motions in the random distribution of oxygen vacancies and lithium ions. The ac universality could result in a disordered configuration of the mobile ions, i.e., the dc conductivity at temperatures above T B . The slow relaxations of the nano-sized polar regions may contribute to the dc conductivity σ dc at temperatures below T B . The characteristic relaxation time τ CD showed a change in activation energy from 1.08 eV to 0.80 eV at temperatures around T B . The scaling factor increased in proportion to (T B T) at T T B , but was almost constant at T >T B , where ε' is the high frequency dielectric constant and T is the temperature in Kelvin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Burns and F. H. Dacol, Phys. Rev. B 28, 2527 (1983).

    Article  ADS  Google Scholar 

  2. W. Dmowski, S. B. Vakhrushev, I.-K. Jeong, M. P. Hehlen, F. Trouw and T. Egami, Phys. Rev. Lett. 100, 137602 (2008).

    Article  ADS  Google Scholar 

  3. A. Rotaru, D. C. Arnold, A. Daoud-Aladine and F. D. Morrison, Phys. Rev. B 83, 184302 (2011).

    Article  ADS  Google Scholar 

  4. J. A. Bock, S. Trolier-McKinstry, G. D. Mahn and C. A. Randal, Phy. Rev. B 90, 115106 (2014).

    Article  ADS  Google Scholar 

  5. T. B. Schrder and J. C. Dyre, Phys. Rev. Lett. 84, 310 (2000).

    Article  ADS  Google Scholar 

  6. J. R. Macdonald, Phys. Rev. B 71, 184307 (2005).

    Article  ADS  Google Scholar 

  7. J. C. Dyre, Phys. Rev. B 48, 12511 (1993).

    Article  ADS  Google Scholar 

  8. A. S. Nowick, A. V. Vaysleyb and I. Kuskovsky, Phys. Rev. B 58, 8398 (1998).

    Article  ADS  Google Scholar 

  9. H. H. P. Gommans, M. Kemerink and W. H. A. Schilders, Phys. Rev. B 72, 165110 (2005).

    Article  ADS  Google Scholar 

  10. D. Viehland, S. Jang, L. E. Cross and M. Wuttig, Phil. Mag. 64, 335 (1991).

    Article  Google Scholar 

  11. I. Svare, S. W. Martin and F. Borsa, Phys. Rev. B 61, 228 (2000).

    Article  ADS  Google Scholar 

  12. C. Leon, M. L. Lucia and J. Santamaria, Phys. Rev. B 55, 882 (1997).

    Article  ADS  Google Scholar 

  13. V. Gupta and A. Mansingh, Phys. Rev. B 49, 1989 (1994).

    Article  ADS  Google Scholar 

  14. K. L. Ngai and R. W. Rendell, Phys. Rev. B 61, 9393 (2000).

    Article  ADS  Google Scholar 

  15. D. L. Sidebottom, B. Roling and K. Funke, Phys. Rev. B 63, 024301 (2000).

    Article  ADS  Google Scholar 

  16. A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983).

    Google Scholar 

  17. G. A. Niklasson, J. Appl. Phys. 66, 4350 (1989).

    Article  ADS  Google Scholar 

  18. L. A. Dissado and R. M. Hill, J. Appl. Phys. 66, 2511 (1989).

    Article  ADS  Google Scholar 

  19. D. W. Davidson and R. H. Cole, J. Chem. Phys. 19, 1484 (1951).

    Article  ADS  Google Scholar 

  20. K. Pathmanathan and J. R. Stevens, J. Appl. Phys. 68, 5128 (1990).

    Article  ADS  Google Scholar 

  21. B.-E. Jun, C. S. Kim, H. K. Kim, J. N. Kim, Y. H. Hwang and D. J. Kim, J. Korean Phys. Soc. 46, 44 (2005)

    Google Scholar 

  22. G. Burns, Phys. Rev. B 13, 215 (1976).

    Article  ADS  Google Scholar 

  23. B. M. Jin, A. S. Bhalla, B. C. Choi and J. N. Kim, Phys. Stat. Sol. A 140, 239 (1993)

    Article  ADS  Google Scholar 

  24. J. S. Kim and J. N. Kim, J. Phys. Soc. Jpn. 69, 1880 (2000).

    Article  ADS  Google Scholar 

  25. P. B. Jamieson, S. C. Abrahams and J. L. Bernstein, J. Chem. Phys. 15, 2355 (1971).

    Google Scholar 

  26. B.-E. Jun, Ph D thesis, Pusan National University, 2005.

  27. A. W. Smith, G. Burns, B. A. Scott and H. D. Edmonds, J. Appl. Phys. 42, 684 (1971).

    Article  ADS  Google Scholar 

  28. F. W. Ainger, J. A. Beswick, W. P. Bickley, R. Clarke and G. V. Smith, Ferroelectrics 2, 183 (1971).

    Article  Google Scholar 

  29. T. Ikeda and K. Kiyohashi, Jpn. J. Appl. Phys. 9, 1541 (1970).

    Article  ADS  Google Scholar 

  30. B. A. Scott, E. A. Giess, B. L. Olson, G. Burns, A. W. Smith and D. F. O’Kane, Mater. Res. Bull. 5, 7 (1970).

    Google Scholar 

  31. L. E. Cross, Ferroelectrics 76, 241 (1987); L. E. Cross and R. R. Neurgaonkar, J. Mater. Sci. 27, 2589 (1992).

    Article  ADS  Google Scholar 

  32. A. J. Bell, J. Phys.: Condens. Matter 5, 8773 (1993).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Chun Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jun, BE., Jeong, J.H., Choi, B.C. et al. Relaxation and phase-transition characteristics of relaxor ferroelectric potassium lithium niobate. Journal of the Korean Physical Society 66, 1736–1743 (2015). https://doi.org/10.3938/jkps.66.1736

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1736

Keywords

Navigation