Skip to main content
Log in

Numerical study of ion orbits in EAST plasmas with a current-reversal equilibrium configuration

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

By solving the Grad-Shafranov equation in the cylindrical coordinate system, we numerically obtain the tokamak plasma equilibrium configurations of the conventional mode and the high-to-lowfield-side current-reversal equilibrium mode (HL-CREC) by using the discharge parameters for the Experimental Advanced Superconductor Tokamak (EAST). By coupling with the particle’s motion equation, we obtain the orbits of trapped particles and passing particles under both equilibrium configurations. We find that the orbit of the passing particle in the HL-CREC is wholly confined on the low-field side and that the half width of the banana orbit of trapped particles increases greatly compared with those in the conventional equilibrium configuration. In addition, the ion loss is studied based on the Monte Carlo method. The results show that for ions near the plasma edge, a much high ion loss rate can be obtained in HL-CREC than that in the conventional equilibrium configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Giruzzi, Nucl. Fusion. 27, 1934 (1987).

    Article  Google Scholar 

  2. S. Koda, T. P. Goodman, M. A. Henderson and F. Hofmann, Plasma Phys. Control. Fusion. 42, 629 (2000).

    Article  ADS  Google Scholar 

  3. V. Er kmann and U. Gasparino, Plasma Phys. Control. Fusion. 36, 1869 (1994).

    Article  ADS  Google Scholar 

  4. G. A. Navratil, C. Cates, M. E. Mauel, D. Maurer, D. Nadle, E. Taylor, Q. Xiao, W. A. Reass and G. A. Wurden, Phys. Plasmas. 5, 1855 (1998).

    Article  ADS  Google Scholar 

  5. V. S. Marchenko and V. V. Lutsenko, Phys. Plasmas. 8, 510 (2001).

    Article  ADS  Google Scholar 

  6. H. R. Wilson, J. W. Connor, R. J. Hastie and C. C. Hegna, Phys. Plasmas. 3, 248 (1996).

    Article  ADS  Google Scholar 

  7. H. Isliker, I. Chatziantonaki, C. Tsironis and L. Vlahos, Plasma Phys. Control Fusion. 54, 095005 (2012).

    Article  ADS  Google Scholar 

  8. C. S. Chang and S. Ku, Phys. Plasmas. 15, 062510 (2008).

    Article  ADS  Google Scholar 

  9. J. S. deGrassie, R. J. Groebner, K. H. Burrell and W. M. Solomon, Nucl. Fusion. 49, 085020 (2009).

    Article  ADS  Google Scholar 

  10. J. S. deGrassie, S. H. Müller and J. A. Boedo, Nucl. Fusion. 52, 013010 (2012).

    Article  ADS  Google Scholar 

  11. W. M. Stacey, Nucl. Fusion. 53, 063011 (2013).

  12. K. C. Shaing, E. C. Crume and W. A. Houlberg, Phys. Fluids. B. 2, 1492 (1990).

    Article  ADS  Google Scholar 

  13. K. C. Shaing, Phys. Plasmas. 9, 1 (2002).

    Article  ADS  Google Scholar 

  14. Q. Y. Shao, J. X. Chen, S. M. Wu, Z. Y. Pan, Y. K. Huo and X. H. Gao, Acta Phys. Sin. 40, 1244 (1991).

    Google Scholar 

  15. K. Miyamoto, Nucl. Fusion. 36, 927 (1996).

    Article  ADS  Google Scholar 

  16. X. Xu, X. Zhao, Z. Wang and C. Tang, Acta Phys. Sin. 61, 18 (2012).

    Google Scholar 

  17. O. Mitarai, S. W. Wolfe, A. Hirose and H. M. Skarsgard, Nucl. Fusion. 27, 604 (1987).

    Article  Google Scholar 

  18. O. Mitarai, A. Hirose and H. M. Skarsgard, Nucl. Fusion. 32, 1801 (1992).

    Article  ADS  Google Scholar 

  19. X. Yang, D. Jiang, W. Li, G. Han, L. Wang, X. Qi, C. Feng, Z. Li and S. Zheng, Nucl. Fusion. 36, 1669 (1996).

    Article  ADS  Google Scholar 

  20. J. Huang, X. Yang, S. Zheng, C. Feng, H. Zhang and L. Wang, Nucl. Fusion. 40, 2023 (2000).

    Article  ADS  Google Scholar 

  21. J. Li, J. Luo and S. Wang, Nucl. Fusion. 47, 1071 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  22. Y. Hu, Phys. Plasmas. 15, 022505 (2008).

    Article  ADS  Google Scholar 

  23. A. A. Martynov, S. Yu. Medvedev and L. Villard, Phys. Rev. Lett. 91, 085004 (2003).

    Article  ADS  Google Scholar 

  24. S. Wang and J. Yu, Phys. Plasmas. 12, 062501 (2005).

    Article  ADS  Google Scholar 

  25. J. Yu, S. Wang and J. Li, Phys. Plasmas. 13, 054501 (2006).

    Article  ADS  Google Scholar 

  26. S. Wang, Phys. Rev. Lett. 93, 155007 (2004).

    Article  ADS  Google Scholar 

  27. X. Shi, Y. Hu and Z. Gao, Plasma Science and Technology. 14, 215 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-xia Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Yj., Gong, Xy., Hu, Ym. et al. Numerical study of ion orbits in EAST plasmas with a current-reversal equilibrium configuration. Journal of the Korean Physical Society 66, 1692–1696 (2015). https://doi.org/10.3938/jkps.66.1692

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1692

Keywords

Navigation