Skip to main content
Log in

Search and parameter estimate in gravitational wave data analysis and the fisher matrix

  • Brief Reports
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

By means of next-generation ground-based gravitational wave (GW) detectors, real GW signals will be directly detected within a few years. In the data analysis of GWs emitted from merging compact binaries, the matched filtering method is employed in the search pipeline to identify GW events. Once a detection is made in the search, the parameter estimate seeks the physical parameters of the GWsource. This pipeline repeatedly performs overlap computations by generating theoretical waveforms and matching those to the detector data based on Monte Carlo simulations. In this work, we briefly review the search and the parameter estimate in GW data analysis. We also introduce the Fisher matrix method that has been mainly used to predict the errors in the parameter estimates analytically. The Fisher matrix is very easy to compute and has very low computational cost compared to Monte Carlo simulations. Using the Fisher matrix, we calculate the parameter estimate errors for a nonspinning black hole — neutron star binary system. We find that the errors of the component masses for the advanced LIGO sensitivity can be smaller than those for the initial LIGO sensitivity by a factor of ~ 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. H. Taylor and J. M. Weisberg, Astrophys. J. 253, 908 (1982).

    Article  ADS  Google Scholar 

  2. J. M. Weisberg and J. H. Taylor, arXiv:astro-ph/0407149 (2004).

    Google Scholar 

  3. J. Abadie et al., (LIGO Scientific Collaboration), arXiv:1411.4547 (2014).

    Google Scholar 

  4. F. Acernese et al., Class. Quantum Grav. 32, 024001 (2014).

    Article  ADS  Google Scholar 

  5. B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown and J. D. E. Creighton, Phys. Rev. D 85, 122006 (2012).

    Article  ADS  Google Scholar 

  6. J. Aasi et al., (LIGO Scientific Collaboration, Virgo Collaboration), Phys. Rev. D 88, 062001 (2013).

    Google Scholar 

  7. M. Vallisneri, Phys. Rev. D 77, 042001 (2008).

    Article  ADS  Google Scholar 

  8. I. Mandel, C. Berry, F. Ohme, S. Fairhurst and W. M. Farr, Class. Quantum Grav. 31, 155005 (2014).

    Article  ADS  Google Scholar 

  9. H.-S. Cho and C.-H. Lee, Class. Quantum Grav. 31, 235009 (2014).

    Article  ADS  Google Scholar 

  10. LSC Algorithm Library software packages LAL, https://www.lsc-group.phys.uwm.edu/daswg/projects/lal/nightly/docs/html/.

  11. A. Buonanno, B. R. Iyer, E. Ochsner, Y. Pan and B. S. Sathyaprakash, Phys. Rev. D 80, 084043 (2009).

    Article  ADS  Google Scholar 

  12. B. S. Sathyaprakash and S. V. Dhurandhar, Phys. Rev. D 44, 3819 (1991).

    Article  ADS  Google Scholar 

  13. C. Cutler and E. É. Flanagan, Phys. Rev. D 49, 2658 (1994).

    Article  ADS  Google Scholar 

  14. E. Poisson and C. M. Will, Phys. Rev. D 52, 848 (1995).

    Article  ADS  Google Scholar 

  15. J. Abadie et al., (LIGO Collaboration, Virgo Collaboration), Phys. Rev. D 85, 082002 (2012).

    ADS  Google Scholar 

  16. L. S. Finn, Phys. Rev. D 46, 5236 (1992).

    Article  ADS  Google Scholar 

  17. C. Cutler and M. Vallisneri, Phys. Rev. D 76, 104018 (2007).

    Article  ADS  Google Scholar 

  18. N. J. Cornish and E. K. Porter, Class. Quantum Grav. 23, S761 (2006).

  19. M. van der Sluys, I. Mandel, V. Raymond, V. Kalogera, C. Röver and N. Christensen, Class. Quantum Grav. 26, 204010 (2009).

    Article  ADS  Google Scholar 

  20. H.-S. Cho, E. Ochsner, R. O’Shaughnessy, C. Kim and C.-H. Lee, Phys. Rev. D 87, 024004 (2013).

    Article  ADS  Google Scholar 

  21. P. Jaranowski and A. Królak, Phys. Rev. D 49, 1723 (1994).

    Article  ADS  Google Scholar 

  22. P. Ajith and S. Bose, Phys. Rev. D 79, 084032 (2009).

    Article  ADS  Google Scholar 

  23. T. Damour, B. R. Iyer and B. S. Sathyaprakash, Phys. Rev. D 63, 044023 (2001).

    Article  ADS  Google Scholar 

  24. C. P. L. Berry et al., arXiv:1411.6934 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Suk Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, HS. Search and parameter estimate in gravitational wave data analysis and the fisher matrix. Journal of the Korean Physical Society 66, 1637–1641 (2015). https://doi.org/10.3938/jkps.66.1637

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1637

Keywords

Navigation