Skip to main content
Log in

Analysis of multifractal strengths in game behaviors

  • Brief Reports
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this paper, we study the multifractal structure and its property from the number of end stones, which means the number of stones on the board at the end of a game, in the Baduk game. We mainly estimate the generalized Hurst exponent, the Renyi exponent, and the singularity spectrum for the time-series data of the number of end stones via multifractal detrended fluctuation analysis. For three segments, we mainly simulate and analyze the multifractal strength in Baduk games with four players. Particularly, the results obtained for games with four players are compared to each other and analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A.-L. Barabasi and H. E. Stanley, Fractional Concepts in Surface Growth (Cambridge University Press, New York, 1995).

    Book  Google Scholar 

  2. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1983).

    Google Scholar 

  3. A. L. Windus and H. J. Jensen, Physica A 388, 3107 (2009).

    Article  ADS  Google Scholar 

  4. T. Vicsek, Fractal Growth Phenomena (World Scientific, Singapore, 1988).

    Google Scholar 

  5. G. Paladin and A. Vulpiani, Phys. Rep. 156, 147 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  6. H. G. E. Hentschel and I. Procaccia, Physica D 8, 435 (1983).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. A. Nobi, S. E.Maeng, G.G. Ha and J. W. Lee, J. Korean Phys. Soc. 62, 569 (2013)

    Article  ADS  Google Scholar 

  8. M. W. Cho, J. Korean Phys. Soc. 64, 1213 (2014)

    Article  ADS  Google Scholar 

  9. H. W. Choi, S. E. Maeng and J. W. Lee, J. Korean Phys. Soc. 60, 657 (2012).

    Article  ADS  Google Scholar 

  10. C. Beck and F. Schögl, Thermodynamics of chaotic systems (Cambridge University Press, 1993)

    Book  Google Scholar 

  11. G. Lim, S. Y. Kim, H. Lee, K. Kim and D.-I. Lee, Physica A 386, 259 (2007).

    Article  ADS  Google Scholar 

  12. G. Parasi and U. Frisch, in Proceedings of the International School on Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, edited by P. Huerre and P. Coullet (Plenum, New York, 1988).

  13. J. W. Kantelhardt, S. A. Zschiegner, E. K-Bunde, S. Havlin, A. Bunde and H. E. Stanley, Physica A 316, 87 (2002).

    Article  MATH  ADS  Google Scholar 

  14. C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley and A. L. Goldberger, Phys. Rev. E 49, 1685 (1994).

    Article  ADS  Google Scholar 

  15. S. M. Ossadnik, S. B. Buldyrev, A. L. Goldberger, S. Havlin, R. N. Mantegna, C.-K. Peng, M. Simons and H. E. Stanley, Biophys. J. 67, 64 (1994).

    Article  ADS  Google Scholar 

  16. Z. Eisler, J. Kertesz, S.-H. Yook and A.-L. Barabasi, Europhys. Lett. 69, 664 (2005).

    Article  ADS  Google Scholar 

  17. Z. Eisler and J. Kertesz, Europhys. Lett. 77, 28001 (2007).

    Article  ADS  Google Scholar 

  18. Z.-Q. Jiang, L. Guo and W.-X. Zhou, Eur. Phys. J. B 57, 347 (2007).

    Article  ADS  Google Scholar 

  19. N. Vandewalle and M. Ausloos, Eur. Phys. J. B 4, 257 (1998).

    Article  ADS  Google Scholar 

  20. K. Ivanova and M. Ausloos, Eur. Phys. J. B 8, 665 (1999).

    Article  ADS  Google Scholar 

  21. F. Schmitt, D. Schertzer and S. Lovejoy, Appl. Stoch. Models Data Anal. 15, 29 (1999).

    Article  MATH  Google Scholar 

  22. F. Schmitt, D. Schertzer and S. Lovejoy, Appl. Fin. 3, 361 (2000).

    MATH  Google Scholar 

  23. L. Calvet and A. Fisher, Rev. Econ. Stat. 84, 381 (2002).

    Article  Google Scholar 

  24. M. Ausloos and K. Ivanova, Comp. Phys. Comm. 147, 582 (2002).

    Article  MATH  ADS  Google Scholar 

  25. A. Z. Gorski, S. Drozdz and J. Speth, Physica A 316, 496 (2002).

    Article  MATH  ADS  Google Scholar 

  26. J. Alvarez-Ramirez, M. Cisneros, C. Ibarra-Valdez and A. Soriano, Physica A 313, 651 (2002).

    Article  MATH  ADS  Google Scholar 

  27. M. Balcilar, Emerging Markets Fin. Trade 39, 5 (2003).

    Google Scholar 

  28. K. E. Lee and J. W. Lee, J. Korean Phys. Soc. 46, 726 (2005).

    Google Scholar 

  29. J. W. Lee, K. E. Lee and P. A. Rikvold, Physica A 364, 355 (2006).

    Article  ADS  Google Scholar 

  30. Z.-Q. Jiang and W.-X. Zhou, Physica A 381, 343 (2007).

    Article  ADS  Google Scholar 

  31. X. Sun, H.-P. Chen, Z.-Q. Wu and Y.-Z. Yuan, Physica A 291, 553 (2001).

    Article  MATH  ADS  Google Scholar 

  32. X. Sun, H.-P. Chen, Y.-Z. Yuan and Z.-Q. Wu, Physica A 301, 473 (2001).

    Article  MATH  ADS  Google Scholar 

  33. D.-S. Ho, C.-K. Lee, C.-C. Wang and M. Chuang, Physica A 332, 448 (2004).

    Article  ADS  Google Scholar 

  34. Y. Wei and D.-S. Huang, Physica A 355, 497 (2005).

    Article  ADS  Google Scholar 

  35. G.-F. Gu, W. Chen and W.-X. Zhou, Eur. Phys. J. B 57, 81 (2007).

    Article  ADS  Google Scholar 

  36. X.-T. Zhuang and Y. Yuan, Physica A 387, 511 (2008).

    Article  ADS  Google Scholar 

  37. G.-X. Du and X.-X. Ning, Physica A 387, 261 (2008).

    Article  ADS  Google Scholar 

  38. Z. R. Struzik and A. P. J. M. Siebes, Physica A 309, 388 (2002).

    Article  MATH  ADS  Google Scholar 

  39. A. Turiel and C. J. Perez-Vicente, Physica A 322, 629 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. A. Turiel and C. J. Perez-Vicente, Physica A 355, 475 (2005).

    Article  ADS  Google Scholar 

  41. P. Oswiecimka, J. Kwapien, S. Drozdz and R. Rak, Acta Physica Polonica B 36, 2447 (2005).

    ADS  Google Scholar 

  42. M. Ausloos, Phys. Rev. E 86, 031108 (2012).

    Article  ADS  Google Scholar 

  43. M. Cencini, F. Cencini and A. Vulpiani, Chaos: From Models to Complex Systems (World Scientific, Singapore, 2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungsik Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, CH., Lee, DI. & Kim, K. Analysis of multifractal strengths in game behaviors. Journal of the Korean Physical Society 66, 1617–1622 (2015). https://doi.org/10.3938/jkps.66.1617

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1617

Keywords

Navigation