Skip to main content
Log in

Regional optimization of the IRI-2012 output (TEC, foF2) by using derived GPS-TEC

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Accurate measurement and determination of the state of the ionosphere has become a key point as ground-based communication systems become more space dependent. However, due to limited infrastructure, a number of global models have been developed with extensive interpolation techniques to comprehensively describe ionospheric dynamics. As a result, most global models do not perform adequately in regions with a paucity of ionospheric measurements. In this paper, the most recent International Reference Ionosphere (IRI-2012) model output, Total Electron Content (TEC) and F2 layer critical frequency (foF2), are optimized (over a range of 120 ° E–150 ° E and 20 ° N–50 ° N in longitude and latitude, respectively). To obtain the optimal solution, we adjust two input parameters, the 12-month running mean sun spot number (R12) and the ionospheric index (IG12), in relation to the derived Global Positioning System (GPS) vertical TEC (VTEC). The results are compared to the measured TEC and foF2 from GPS receivers and ionosondes, respectively. The analysis shows that the modified IRI-2012 model is more accurate at estimating both the TEC and the foF2 values than the original model during days of geomagnetic quiet and disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Hajj, B. D. Wilson, C. Wang, X. Pi and I. G. Rosen, Radio Sci. 39, RS1S05 (2004).

  2. G. Jee, H. B. Lee, Y. H. Kim, J. K. Chung and J. Cho, J. Geophys. Res. 115, A10319 (2010).

  3. M. Herńandez-Pajares, J. M. Juan and J. Sanz, J. Atmos. Sol.-Terr. Phys. 61, 1237 (1999).

    Article  ADS  Google Scholar 

  4. M. Herńandez-Pajares, J. M. Juan, J. Sanz, R. Orus, Garcia-Rigo A, J. Feltens, A. Komjathy, S. C. Schaer and A. Krankowski, J. Geod. 83, 263 (2009).

    Article  ADS  Google Scholar 

  5. D. Bilitza, Radio Sci. 21, 343 (1986).

    Article  ADS  Google Scholar 

  6. D. Bilitza, L. A. McKinnell, B. Reinisch and T. Fuller-Rowell, J. Geod. 85, 909 (2011).

    Article  ADS  Google Scholar 

  7. D. Bilitza, Radio Sci. 36, 261 (2001).

    Article  ADS  Google Scholar 

  8. D. Bilitza and B. W. Reinisch, Adv. Space Res. 42, 599 (2008).

    Article  ADS  Google Scholar 

  9. L. A. McKinnel and A. W. V. Poole, South African J. Sci. 100, 519 (2004).

    Google Scholar 

  10. H. Lühr and C. Xiong, Geophys. Res. Lett. 37, L23101 (2010).

  11. D. Okoh, L. A. McKinnell and P. J. Cilliers, Ann. Geophys. 28, 1431 (2010).

    Article  ADS  Google Scholar 

  12. J. B. Habarulema, L. A. McKinnell and B. D. Opperman, J. Geophys. Res. 116, A04314 (2011).

  13. N. Ssessanga, L. A. McKinnell and J. B. Habarulema, J. Atmos. Sol.-Terr. Phys. 112, 20 (2014).

    Article  ADS  Google Scholar 

  14. Y. Asmare, T. Kassa and M. Nigussie, Adv. Space Res. 53, 1582 (2014).

    Article  ADS  Google Scholar 

  15. M. Schmidt, D. Bilitza, C. K. Shum and C. Zeilhofer, Adv. Space Res. 42, 782 (2008).

    Article  ADS  Google Scholar 

  16. C. Zeilhofer, M. Schmidt, D. Bilitza and C. K. Shum, Adv. Space Res. 43, 1669 (2009).

    Article  ADS  Google Scholar 

  17. D. Okoh, L. A. McKinnell, P. Cilliers and P. Okeke, Adv. Space Res. 52, 1791 (2013).

    Article  ADS  Google Scholar 

  18. P. Spalla and L. Cairolo, Ann. Geophys. 37, 929 (1994).

    Google Scholar 

  19. Z. Houminer and H. Soicher, Radio Sci. 31, 1099 (1996).

    Article  ADS  Google Scholar 

  20. S. Kouris, T. D. Xenos, K. V. Polimeris and D. Stergiou, Ann. Geophys. 47, 1325 (2004).

    Google Scholar 

  21. L. Perrone and G. De Franceschi, Ann. Geophys. 41, 5 (1998).

    Google Scholar 

  22. CCIR, Atlas of ionospheric characteristics. Report 371. Comité Consultatif International des Radio Communications, Genève (1991).

    Google Scholar 

  23. N. Balan, G. J. Bailey, B. Jenkins, P. B. Rao and R. J. Moffett, J. Geophys. Res. 99, 2243 (1994).

    Article  ADS  Google Scholar 

  24. Y. T. Chiu, J. Atmos. Terr. Phys. 37, 1563 (1975).

    Article  ADS  Google Scholar 

  25. P. A. Smith and J. W. King, J. Atmos. Terr. Phys. 43, 1057 (1981).

    Article  ADS  Google Scholar 

  26. M. S. V. Gopal Rao and R. Sambasiva Rao, J. Atmos. Terr. Phys. 31, 1119 (1969).

    Article  ADS  Google Scholar 

  27. R. Y. Liu, P. A. Smith and J. W. King, Telecommun. J. 50, 408 (1983).

    Google Scholar 

  28. CCIR, Atlas of ionospheric characteristics. Report 340-1, 340-6. Comité Consultatif International des Radio Communications, Genève (1966).

    Google Scholar 

  29. C. Rush, M. Fox, D. Bilitza, K. Davies, L. McNamara, F. Stewart and M. PoKempner, Telecommun. J. 56, 179 (1989).

    Google Scholar 

  30. D. Bilitza, R. Eyfrig and N. M. Sheikh, Telecommun. J. 46, 549 (1979).

    ADS  Google Scholar 

  31. W. B. Jones and R. M. Gallet, Telecommun. J. 29, 129 (1962).

    Google Scholar 

  32. W. B. Jones and R. M. Gallet, Telecommun. J. 32, 18 (1965).

    Google Scholar 

  33. C. Rush, M. PoKempner, D. Anderson, F. Stewart and J. Perry, Radio Sci. 18, 95 (1983).

    Article  ADS  Google Scholar 

  34. C. M. Rush, M. PoKempner, D. N. Anderson, J. Perry, F. G. Stewart and R. Reasoner, Radio Sci. 19, 1083 (1984).

    Article  ADS  Google Scholar 

  35. M. Fox and L. McNamara, J. Atmos. Terr. Phys. 50, 1077 (1988)

    Article  ADS  Google Scholar 

  36. J. O. Adeniyi, D. Bilitza, S. M. Radicella and A. A. Willoughby, Adv. Space Res. 31, 507 (2003).

    Article  ADS  Google Scholar 

  37. G. K. Seemala and C. E. Valladares, Radio Sci. 46, RS5019 (2011).

  38. J. B. Habarulema, L. A. McKinnell, D. Buresová, Y. Zhang, G. Seemala, C. Ngwira, J. Chum and B. Opperman, J. Atmos. Sol.-Terr. Phys. 102, 105 (2013).

    Article  ADS  Google Scholar 

  39. L. Liu, W. Wan, B. Ning and M. L. Zhang, J. Geophys. Res. 114, A06308 (2009).

  40. M. Chakraborty, S. Kumar, B. K. De and A. Guha, Ann. Geophys. 57, A0539 (2014).

  41. D. Carpenter and R. Anderson, J. Geophys. Res. 97, 1097 (1992).

    Article  ADS  Google Scholar 

  42. Z. T. Katamzi and J. B. Habarulema, Adv. Space. Res. 53, 48 (2014).

    Article  ADS  Google Scholar 

  43. G. Miró Amarante, M. Cueto Santamaría, K. Alazo and S. M. Radicella, Adv. Space Res. 39, 681 (2007).

    Article  ADS  Google Scholar 

  44. O. J. Olwendo, P. Baki, P. J. Cilliers, C. Mito and P. Doherty, Adv. Space Res. 52, 1770 (2013).

    Article  ADS  Google Scholar 

  45. L. F. McNamara, J. M. Retterer, C. R. Baker, G. J. Bishop, D. L. Cooke, C. J. Roth and J. A.Welsh, Radio Sci. 45, RS2001 (2010).

  46. I. E. Zakharenkova, A. Krankowski, D. Bilitza, I. V. Cherniak, I. I. Shagimuratov and R. Sieradzki, Adv. Space Res. 51, 620 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ha Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ssessanga, N., Kim, Y.H., Kim, E. et al. Regional optimization of the IRI-2012 output (TEC, foF2) by using derived GPS-TEC. Journal of the Korean Physical Society 66, 1599–1610 (2015). https://doi.org/10.3938/jkps.66.1599

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1599

Keywords

Navigation