Skip to main content

Enhancing the dielectric property of 0.69PZT-0.31PZNN thick films by optimizing the poling condition

Abstract

We investigated how the applied electric-field’s magnitude and the poling time affected, respectively, the dielectric property and the microstructure of piezoelectric lead zirconate titanate/lead zirconate nickel niobate (PZT-PZNN) thick films in order to apply the films to piezoelectric energy harvesters. Several 300-µm-thick, 10 × 10-mm2 PZT-PZNN squares were tape cast, laminated, sintered, and poled under 2-, 4-, 6-, 10-, 14-, and 15-kV/mm electric fields for 30 min. The 10-kV/mm electric field produced the highest d 33 × g 33 without mechanically damaging the sample. Further, samples were sintered at 950, 1000, and 1020 °C and subsequently poled at 10 kV/mm (previously determined as the magnitude of the optimal poling electric field) for 15, 30, 60, 120, and 240 min to investigate how the poling time affected the piezoelectric ceramic’s microstructure. The optimal poling time for all the sintered samples was 60 min. Further, the piezoelectric ceramics composed of small grains and poled longer than 60 min showed higher dielectric constants. However, those composed of large grains and poled for times shorter than 60 min showed higher dielectric constants because the element mobility of the piezoelectric ceramics increased with increasing poling time.

This is a preview of subscription content, access via your institution.

References

  1. J. Rocha, L. Goncalves, P. Rocha, M. Silva and S. Lanceros-Mendez, IEEE Trans. Indust. Electron. 57, 813 (2010).

    Article  Google Scholar 

  2. D. Song, H. Jang, S. Kim, C. Yang, M. Woo, S. Hong, J. Lee and T. Sung, J. Electroceram. 31, 1 (2013).

    Article  Google Scholar 

  3. D. Song, H. Jang, S. Kim and T. Sung, J. Electroceram. 31, 35 (2013).

    Article  Google Scholar 

  4. D. Song, C. Yang, S. Hong, S. Kim, M. Woo and T. Sung, Ferroelectrics 449, 11 (2013).

    Article  Google Scholar 

  5. S. Roundy and P. Wright, Smart Mater. Struct. 13, 1131 (2004).

    ADS  Article  Google Scholar 

  6. H. Jung, D. Song, S. Hong, Y. Song and T. Sung, Jpn J. Appl. Phys. 52, 10MB03 (2013).

  7. S. Pryia, C. Chen, D. Fye and J. Zahnd, Jpn J. Appl. Phys. 44, L104 (2005).

  8. M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou and Z. L. Wang, Adv. Mater. 24, 1759 (2012).

    Article  Google Scholar 

  9. S. Saadon and O. Sidek, Energy Conver. and Manage. 52, 500 (2011).

    Article  Google Scholar 

  10. N. E. Toit, B. L. Wardle and S. G. Kim, Integ. Ferroelect. 71, 121 (2005).

    Article  Google Scholar 

  11. L. Gu, Microelect. J. 42, 277 (2011).

    Article  Google Scholar 

  12. V. Walter, P. Delobell, P. L. Moal, E. Joseph and M. Collet, Sensors and Actuators A 96, 157 (2002).

    Article  Google Scholar 

  13. S. Gebhardt et al., J. European Ceram. Soc. 24, 1101 (2004).

    Article  Google Scholar 

  14. S. L. Dren, L. Simon, P. Gonnard, M. Troccaz and A. Nicolas, Mater. Res. Bull. 35, 2037 (2000).

    Article  Google Scholar 

  15. S. Gebhardt, L. Seffner, F. Schlenkrich and A. Schonecker, J. European Ceram. Soc. 27, 4177 (2007).

    Article  Google Scholar 

  16. N. Jaitanong and A. Chaipanich, Ferroelectric Lett. 35, 17 (2008).

    Article  Google Scholar 

  17. F. X. Li and D. N. Fang, Acta Materialia 53, 2665 (2005).

    Article  Google Scholar 

  18. T. M. Kamel and G. de With, J. European Ceram. Soc. 28, 851 (2008).

    Article  Google Scholar 

  19. Z. Li, B. Dong and D. Zhang, Cement & Conc. Compos. 27, 27 (2005).

    Article  Google Scholar 

  20. Y. Takahiro, K. Masako and S. Norikazu, J. Mat. Sci: Mater. Electron. 11, 425 (2000).

    Google Scholar 

  21. Q. Xu, S. Wu, S. Chen, W. Chen, J. Lee, J. Zhou, H. Sun and Y. Li, Mater. Res. Bull. 40, 373 (2005).

    Article  Google Scholar 

  22. T. M. Kamel and G. de With, J. European Ceram. Soc. 28, 1827 (2008).

    Article  Google Scholar 

  23. L. L. Sun, O. K. Tan, W. Gu. Liu, W. G. Zhu and X. Yao, Infrared Phys. Tech. 44, 177 (2003).

    ADS  Article  Google Scholar 

  24. T. M. Kamel, F. X. N. M. Kools and G. de With, J. European Ceram. Soc. 27, 2471 (2007).

    Article  Google Scholar 

  25. B. Ploss, W. Y. Ng, H. L. Chan, B. Ploss and C. L. Choy, Compos. Sci. Tech. 61, 957 (2001).

    Article  Google Scholar 

  26. S. Huang, J. Chang, L. Lu, F. Liu, Z. Ye and X. Cheng, Mater. Res. Bull. 41, 291 (2006).

    Article  Google Scholar 

  27. Y. Feldman, A. Puzenko and Y. Ryabov, Fractals, Diffusion, and Relaxation in Disordered Complex Systems: A Special Volume of Advances in Chemical Physics 133, Part A (2006).

  28. C. H. Choi, I. T. Seo, D. Song,M. S. Jang, B. Y. Kim, S. Nahm, T. H. Sung and H. C. Song, J. European Ceram. Soc. 33, 1343 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Hyun Sung.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, D., Woo, M.S., Ahn, J.H. et al. Enhancing the dielectric property of 0.69PZT-0.31PZNN thick films by optimizing the poling condition. Journal of the Korean Physical Society 66, 1549–1553 (2015). https://doi.org/10.3938/jkps.66.1549

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1549

Keywords

  • Polarization
  • PZT-PZNN
  • Thick film
  • Energy harvesting