Skip to main content
Log in

Highly efficient hybrid solar cell using ZnO nanorods and assessment of changes in cell performance by varying the growth period

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Zinc oxide nanorod arrays (ZnO NRs) were grown from ZnO seed-coated substrates in an aqueous solution by using the hydrothermal method for different growth periods varying from 5 min to 1 hour. The influence of the growth period of the ZnO nanorods on photovoltaic applications was studied in detail. Experimental results showed that utilization of the nanorod arrays lead to an enhanced the cell performance by increasing of light absorption and creation of a vertical direction for electron transport in the solar cells. A power conversion efficiency of 3.33% with an opencircuit voltage of V OC = 0.58 V, a short-circuit current of J SC = 10.05 mA/cm2 and a fill factor of FF = 54.35% was achieved for solar cells based on ZnO NRs with growth period of 20 min. Such solar cells with an optimal growth period are effective in light trapping, which leads to a significant enhancement in the absorption of light, and thereby, show an obvious increase in the power conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. L. Yuan, S. L. Tao, J. S. Yu and Y. D. Jiang, J. Chem. Lett. 39, 302 (2010).

    Article  Google Scholar 

  2. J. S. Yu, Z. L. Yuan, G. Z. Xie and Y. D. Jiang, J. Electr. Sci. and Tech. 8, 3 (2010).

    Google Scholar 

  3. Q. Huang, L. Fang, X. Chen and M. Saleem, J. Alloys and Compd. 509, 9456 (2011).

    Article  Google Scholar 

  4. E. C. Garnett, P. D. Yang and J. Am. Chem. Soc. 130, 9224 (2008).

    Article  Google Scholar 

  5. M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. D. Yang, Nature Mater. 4, 455 (2005).

    Article  ADS  Google Scholar 

  6. M. Zhong, D. Yang, J. Zhang, J. Y. Shi, X. L. Wang and C. Li, Solar Energy Materials and Solar Cells 96, 160 (2012).

    Article  Google Scholar 

  7. Y. Myung, J. H. Kang, J. W. Choi, D. M. Jang and J. Park, J. Mater. Chem. 22, 2157 (2012).

    Article  Google Scholar 

  8. A. Furube, R. Katoh, T. Yoshihara, K. Hara, S. Murata, H. Arakawa and M. Tachiya, J. Phys. Chem. B 108, 12583 (2004).

    Article  Google Scholar 

  9. M. Krunks, A. Katerski, T. Dedova, I. Oja Acik and A. Mere, Solar Energy Materials & Solar Cells 92, 1016 (2008).

    Article  Google Scholar 

  10. A. M. Lockett, P.J. Thomas and P. O’Brien, J. Phys. Chem. C 116, 8089 (2012).

    Article  Google Scholar 

  11. J. P. Liu, X. T. Huang, Y. Y. Li, X. X. Ji, Z. K. Li, X. He and F. L. Sun, J. Phys. Chem. C 111, 4990 (2007).

    Article  Google Scholar 

  12. L. Vayssieres, J. Adv. Mater. 15, 464 (2003).

    Google Scholar 

  13. L. Y. Chen, Y. T. Yin, C. H. Chen and J.W. Chiou, J. Phy. Chem. C 115, 20913 (2011).

    Article  Google Scholar 

  14. L. Yang, Q. Zhao, M. Willander and J. Yang, J. Cryst. Growth 311, 1046 (2009).

    Article  ADS  Google Scholar 

  15. X. Meng, D. Shen, J. Zhang, D. Zhao, Y. Lu, L. Dong, Z. Zhang, Y. Liu and X. Fan, Solid State Commun. 135, 179 (2005).

    Article  ADS  Google Scholar 

  16. J. Yang, M. Gao, L. Yang, Y. Zhang, J. Lang, D. Wang, Y. Wang, H. Liu and H. Fan, Appl. Surf. Sci. 255, 2646 (2008).

    Article  ADS  Google Scholar 

  17. Z. Li, X. Huang, J. Liu, Y. Li and G. Li, Mater. Lett. 62, 1503 (2008).

    Article  Google Scholar 

  18. M. Vanecek et al., in Proceedings of the 25th European Photovoltaic Solar Energy Conference (2010), p. 2763.

    Google Scholar 

  19. Y. Kuang, K. H. M. van der Werf, Z. S. Houweling and R. E. I. Schropp, Appl. Phys. Lett. 98, 11 (2011).

    Article  Google Scholar 

  20. O. Akhavan, M. Mehrabian, K. Mirabbaszadeh and R. Azimirad, J. Phys. D: Appl. Phys. 42, 225305 (2009).

    Article  ADS  Google Scholar 

  21. Y. Hames, Z. Alpaslan, A. Kosemen, S. Eren San and Y. Yerli, Solar Energy 84, 426 (2010).

    Article  ADS  Google Scholar 

  22. M. Seol, E. Ramasamy, J. Lee and K. Yong, J. Phys. Chem. C 115, 44 (2011).

    Article  Google Scholar 

  23. C. Z. Yao, B. H. Wei, L. X. Meng, H. Li, Q. J. Gong, H. Sun, H. X. Ma and X. H. Hu, J. Power Sources 207, 222 (2012).

    Article  Google Scholar 

  24. K. S. Leschkies, A. G. Jacobs, D. J. Norris and E. S. Aydil, Appl. Phys. Lett. 95, 193103 (2009).

    Article  ADS  Google Scholar 

  25. E. Garnett and P. Yang, Nano Lett. 10, 1082 (2010).

    Article  ADS  Google Scholar 

  26. H. W. Deckman, C. R. Wronski, H. Witzke and E. Yablonovitch, J. Appl. Phys. Lett. 42, 11 (1983).

    Article  Google Scholar 

  27. D. Yun, X. Xia, S. Zhang, Z. Bian, R. Liu and C. Huang, J. Chem. Phys. Lett. 516, 92 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masood Mehrabian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrabian, M., Aslyousefzadeh, S. & Maleki, M.H. Highly efficient hybrid solar cell using ZnO nanorods and assessment of changes in cell performance by varying the growth period. Journal of the Korean Physical Society 66, 1527–1531 (2015). https://doi.org/10.3938/jkps.66.1527

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1527

Keywords

Navigation