Journal of the Korean Physical Society

, Volume 66, Issue 9, pp 1355–1358 | Cite as

Structural changes and microstructures of Ba1-xSrxAl2O4 for 0 < x < 0.4

  • E. Tanaka
  • Y. Ishii
  • H. Tsukasaki
  • S. Mori
  • M. Osada
  • H. Taniguchi
  • Y. Sato
  • Y. Kubota
Article

Abstract

We have investigated the structural changes and the microstructures of Ba1-xSrxAl2O4 for 0 < x < 0.4 by using transmission electron microscope (TEM) and synchrotron radiation powder X-ray diffraction experiments. The TEM experiments revealed the existence of a structural phase boundary at approximately x = 0.1, at which the superlattice reflection spots at the 1/2 0 0 -type positions change into diffuse streaks along three equivalent <110> directions in the hexagonal structure. In addition, real-space images of Ba1-xSrxAl2O4 for 0 < x < 0.4 reveal that BaAl2O4 should be characterized as a modulated structure with triple-q modulation vectors along the <110> directions and on the other hand, Ba1-xSrxAl2O4 for 0.1 < x < 0.4 be characterized as an intermediate (precursor) state with a rigid unit mode due to structural instability. These experimental results implied that the partial substitution of Sr2+ for Ba2+ should suppress a structural instability due to the AlO4 tetrahedral network and decrease the structural phase transition temperature.

Keywords

Trydimyte structure BaAl2O4 Diffuse scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. M. Mothudi, M. A. Lephoto, O. M. Ntwaeaborwa, J. R. Botha and H. C. Swart, Physica B 407, 1620 (2012).CrossRefADSGoogle Scholar
  2. [2]
    L. W. Zhang, L. Wang and Y. Zhu, Adv. Funct. Mater. 17, 3781 (2007).CrossRefGoogle Scholar
  3. [3]
    H. Ryu, B. K. Singh and K. S. Bartwal, Physica B 403, 126 (2008).CrossRefADSGoogle Scholar
  4. [4]
    Q. Wu, Z. Liu and H. Jiao, Physica B 404, 2499 (2009).CrossRefADSGoogle Scholar
  5. [5]
    H. Yamada, H. Kusaba and C-N. Xu, Appl. Phys. Lett. 92, 101909 (2008).CrossRefADSGoogle Scholar
  6. [6]
    Y. Liu and C-N. Xu, Appl. Phys. Lett. 84, 5016 (2004).CrossRefADSGoogle Scholar
  7. [7]
    C. Xie, Q. Zeng, D. Dong, S. Gao, Y. Cai and A. R. Oganov, Phys. Lett. A (in press).Google Scholar
  8. [8]
    B. Liu, M. Gu, X. Liu, S. Huang and C. Ni, Journal of alloys and compounds 509, 4300 (2011).CrossRefGoogle Scholar
  9. [9]
    H. T. Stokes, C. Sadate, D. M. Hatch, L. L. Boyer and M. J. Mehl, Phys. Rev. B 65, 064105 (2002).Google Scholar
  10. [10]
    A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Temdeloo and S. Amelinckx, Phase Transit. 71, 143 (2000).CrossRefGoogle Scholar
  11. [11]
    J. M. Perez-Mato, R. L. Withers, A-K. Larsson, D. Orobengoa and Y. Liu, Phys. Rev. B 79, 064111 (2009).Google Scholar
  12. [12]
    J. M. Perez-Mato, D. Orobengoa and M. I. Aroyo, Acta Crystallograp. A 66, 558 (2010).CrossRefADSGoogle Scholar
  13. [13]
    A. Bieniok and K. D. Hammonds, Micropo. and Mesopo. Mater. 25, 193 (1998).CrossRefGoogle Scholar
  14. [14]
    M. Dove, A. K. A. Pryde, V. Heine and K. D. Hammonds, J. Phys. Cond. Matter. 19, 275209 (2007).CrossRefADSGoogle Scholar
  15. [15]
    K. Hammonds, M. Dove, A. Giddy, V. Heine and B. Winkler, Am. Mineralogist 81, 1057 (1996).Google Scholar
  16. [16]
    T. A. Mary, J. S. Evans, T. Vogt and A. W. Sleight, Science 272, 90 (1996).CrossRefADSGoogle Scholar
  17. [17]
    J. S. O. Evans, T. A. Mary, T. Vogt, M. A. Subramarian and A. W. Sleight, Chem. Mater. 8, 2809 (1996).CrossRefGoogle Scholar
  18. [18]
    J. S. O. Evans, T. A. Mary and A. W. Sleight, J. of Solid State Chem. 137, 148 (1998).CrossRefADSGoogle Scholar
  19. [19]
    G. Wallez, N. Clavier, N. Dacheux and D. Bregiroux, Matrer. Res. Bull. 46, 1777 (2011).CrossRefGoogle Scholar
  20. [20]
    M. K. Gupta, R. Mittal and S. L. Chaplot, Chinese J. of Phys. 49, 316 (2011).Google Scholar
  21. [21]
    C. Lind, Materials 5, 1125 (2012).CrossRefADSGoogle Scholar
  22. [22]
    U. Rodehorst, M. A. Carpenter, S. Marion and C. M. B. Henderson, Mineralogical Mag. 67, 989003.Google Scholar
  23. [23]
    K. Fukuda, T. Iwata and T. Orito, Solid State Chem. 178, 3662 (2005).CrossRefADSGoogle Scholar
  24. [24]
    S. Niyomwas, T. Sathaporn and S. Singarothai, Marer. Sci. and Engin. 18, 072001 (2011).Google Scholar
  25. [25]
    E. Tanaka, Y. Ishii, H. Tsukasaki, H. Taniguchi and S. Mori, J. Jpn. Appl. Phys. 53, 09PB01 1–4 (2014).Google Scholar
  26. [26]
    V. Petricek, M. Dusek and L. Palatinus, Jana2006. The Crystallographic Computing System (Institute of Physics, Prague, 2006).Google Scholar
  27. [27]
    A-K. Larsson, R. L. Withers, J. M. Perez-Mato, J. D. Fitz Gerald, P. J. Saines, B. J. Kennedy and Y. Liu, J. Solid State Chem. 181, 1816 (2008).CrossRefADSGoogle Scholar
  28. [28]
    R. L. Withers, Solid State Sci. 5, 115 (2003).CrossRefADSGoogle Scholar
  29. [29]
    Y. Ishii, E. Tanaka, H. Tsukasaki and S. Mori (in preparation).Google Scholar

Copyright information

© The Korean Physical Society 2015

Authors and Affiliations

  • E. Tanaka
    • 1
  • Y. Ishii
    • 1
  • H. Tsukasaki
    • 1
  • S. Mori
    • 1
  • M. Osada
    • 2
  • H. Taniguchi
    • 3
  • Y. Sato
    • 4
  • Y. Kubota
    • 4
  1. 1.Department of Materials ScienceOsaka Prefecture UniversitySakai, OsakaJapan
  2. 2.National Institute of Materials Science (NIMS)Tsukuba, IbarakiJapan
  3. 3.Department of PhysicsNagoya UniversityNagoyaJapan
  4. 4.Department of Physical ScienceOsaka Prefecture UniversitySakai, OsakaJapan

Personalised recommendations