Abstract
Nanostructured titanium dioxide (NTiO2) is known to possess efficient photocatalytic activity and to have diverse applications in many fields due to its chemical stability, high surface area/volume ratio, high transmittance, and high refractive index in the visible and the near-ultraviolet regions. These facts prompted us to develop TiO2 nanotube (TiO2 NT) arrays through electrochemical anodic oxidation involving different electrolytes comprised of phosphoric acid — hydrofluoric acid aqueous systems by varying the voltage and the time. The annealing temperature of the nanotubes, TiO2 NTs, were varied to modify the surface morphology and were characterized by using X-ray diffraction and scanning electron microscopy. Scanning electron microscopy and X-ray diffraction results showed that the samples had uniform morphologies and good crystalline structures of the anatase phase at lower annealing temperatures and of the rutile phase at higher annealing temperatures. A secondary-ion mass-spectrometry analysis was used to investigate the surface atoms and to conduct a depth profile analysis of the TiO2 NTs. The efficiency of the photocatalytic activity of the TiO2 NT arrays in degrading methylene blue (MB) was investigated under UV-Vis light irradiation. The maximum photocatalytic activity was achieved for the samples with lower annealing temperatures due to their being in the anatase phase and having a higher surface area and a smaller crystal size, which play important roles in the degradation of organic pollutants.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
R. Liu, W. D. Yang, L. S. Qiang and J. F. Wu, Thin Solid Films 519, 6459 (2011).
Y. Ji, K. C. Lin, K. C. Lin, H. Zheng, J. J. Zhu and A. C. S. Samia, Electrochem. Commun. 13, 1013 (2011).
O. K. Varghese, D. Gong, M. Paulose, K. G. Ong and C. A. Grimes, Sensors and Actuators B: Chemical 93, 338 (2003).
K. Y. Chun, B. W. Park, Y. M. Sung, D. J. Kwak, Y. T. Hyun and M. W. Park, Thin Solid Films 517, 4196 (2009).
J. Wan, X. Yan, J. Ding, M. Wang and K. Hu, Mat. Characterization 60, 1534 (2009).
X. Cui, H. M. Kim, M. Kawashita, L. Wang, T. Xiong, T. Kokubo and T. Nakamura, Dental Mat. 25, 80 (2009).
H. H. Park, I. S. Park, K. S. Kim, W. Y. Jeon, B. K. Park, H. S. Kim, T. S. Bae and M. H. Lee, Electrochimica Acta 55, 6109 (2010).
S. M. Kim, T. K. Yun and D. I. Hong, J. Korean Chem. Soc. 49, 567 (2005).
S. Y. Lim, T. D. Nguyen-Phan and E W. Shin, Appl. Chem. Eng. 22, 61 (2011).
T. Peng, D. Zhao, D. Dai, W. Shi and K. Hirao, J. Phys. Chem. B 109, 4947 (2005).
X. Zeng, Y. X. Gan, E. Clark and L. Su, J. Alloys Comp. 509, L221 (2011).
S. Chen, Y. Xin, Y. Zhou, Y. Ma, H. Zhou and L. Qi, Energy Environ. Soc. DOI: 10.1039/C3EE42646G (2014).
B. Zhang, Y. Liu, Z. Huang, S. Oh, Y. Yu, U. W. Mai and J. K. Kim, J. Mater. Chem. 22, 12133 (2012).
J. Qiu, C. Lai, E. Gray, S. Li, S. Qiu, E. Strounina, C. Sun, H. Zhao and S. Zhang, J. Mater. Chem. A 2, 6353 (2014).
L. Miao, S. Tanemura, S. Toh, K. Kaneko and M. Tanemura, Appl. Surf. Sci. 238, 175 (2004).
M. S. Sander, M. J. Côté, W. Gu, B. M. Kile and C. P. Tripp, Adv. Mater. 16, 2052 (2004).
M. Miyauchi and H. Tokudome, J. Mater. Chem. 17, 2095 (2007).
T. Ruff, R. Hahn and P. Schmuki, App. Surf. Sci. 257, 8177 (2011).
N. K. Allam and C. A. Grimes, Solar Energy Mater. Solar Cells 92, 1468 (2008).
S. Palmas, A. D. Pozzo, M. Mascia, A. Vacca, A. Ardu, R. Matarrese and I. Nova, Int. J. Hydrogen Energy 36, 8894 (2011).
E. H. Chung et al., J. Korean Phy. Soc. 61, 924 (2012).
R. Ruff, R. Hahn and P. Schmuki, Appl. Surf. Sci. 257, 8177 (2011).
K. Bauer, S. Kleber and P. Schmuki, Electrochem. Commun. 8, 1321 (2006).
H. Yang and C. Pan, J. Alloys Compd. 492, L33 (2010).
Z. Zhang, M. F. Hossai and T. Takahashi, Int. J. Hydrogen Energy 35, 8528 (2010).
X. Zeng, Y. X. Gan, E. Clark and L. Su, J. Alloys Compd. 509, L221 (2011).
Y. X. Gan, B. J. Gan and L. Su, Mater. Sci. Engin. B 176, 1197 (2011).
C. Xue, F. Zhang, S. Chen, Y. Yin and C. Lin, Mat. Sci. Semicond. Proc. 14, 157 (2011).
Y. Sun, G. Wang and K. Yan, Int. J. Hydrogen Energy 36, 15502 (2011).
S. Yamazaki, M. Sugihara, E. Yasunaga, T. Shimooka and K. Adachi, J. Photochem. Photobio. A: Chem. 209, 74 (2010).
D. Miller, S. Mamiche-Afara, M. J. Dignam and M. Moskovits, Chem. Phys. Lett. 100, 236 (1983).
K. A. McDonnell, N. J. English, C. P. Stallard, M. Rahman and D. P. Dowling, Appl. Surf. Sci. 275, 316 (2013).
N. K. Allam and M. El-Sayed, J. Phys. Chem. C 114, 12024 (2010).
D. Fang, Z. Luo, K. Huang and D. C. Lagoudas, Appl. Surf. Sci. 257, 6451 (2011).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chung, E.H., Baek, S.R., Yu, S.M. et al. Self-organized TiO2 nanotube arrays in the photocatalytic degradation of methylene blue under UV light irradiation. Journal of the Korean Physical Society 66, 1135–1139 (2015). https://doi.org/10.3938/jkps.66.1135
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.3938/jkps.66.1135