Skip to main content
Log in

Gravity as a quantum entanglement force

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We conjecture that total the quantum entanglement of matter and vacuum in the universe tends to increase with time, like entropy, and that an effective force is associated with this tendency. We also suggest that gravity and dark energy are types of quantum entanglement forces, similar to Verlinde’s entropic force, and give holographic dark energy with an equation of state comparable to current observational data. This connection between quantum entanglement and gravity could give some new insights into the origins of gravity, dark energy, and the arrow of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Verlinde, Journal of High Energy Physics 1104, 029 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  2. L. Zhao, Commun. Theor. Phys. 54, 641 (2010).

    Article  ADS  MATH  Google Scholar 

  3. Y. S. Myung, arXiv:1002.0871 (2010).

    Google Scholar 

  4. Y. X. Liu, Y. Q. Wang and S. W. Wei, Class. Quant. Grav. 27, 185002 (2010).

  5. Y. Tian and X. N. Wu, Phys. Rev. D 81, 104013 (2010).

    Article  ADS  Google Scholar 

  6. M. Diego, arXiv:1002.1941 (2010).

    Google Scholar 

  7. I. V. Vancea and M. A. Santos, Mod. Phys. Lett. A 27, 1250012 (2012).

    Google Scholar 

  8. R. A. Konoplya, Eur. Phys. J. C 69, 555 (2010) [arXiv:1002.2818 [hep-th]].

    Article  ADS  Google Scholar 

  9. H. Culetu, arXiv:1002.3876 (2010).

    Google Scholar 

  10. T. Padmanabhan, Mod. Phys. Lett. A 25, 1129 (2010) [arXiv:0912.3165 [gr-qc]].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. J. W. Lee, J. Lee and H. C. Kim, Journal of Cosmology and Astroparticle Physics 0708, 005 (2007) [hepth/0701199].

    Article  ADS  Google Scholar 

  12. H. C. Kim, J. W. Lee and J. Lee, Mod. Phys. Lett. A 25, 1581 (2010) [arXiv:0709.3573 [hep-th]].

    Article  ADS  MATH  Google Scholar 

  13. H. C. Kim, J. W. Lee, and J. Lee, Journal of Cosmology and Astroparticle Physics 0808, 035 (2008).

    Article  ADS  Google Scholar 

  14. J. W. Lee, H. C. Kim and J. Lee, J. Korean Phys. Soc. 63, 1094 (2013) [arXiv:1001.5445 [hep-th]].

    Article  ADS  Google Scholar 

  15. J. W. Lee, talk given at the KIASWorkshop on Quantum Information Sciences, Aug. 19, 2009, Seoul, Korea.

    Google Scholar 

  16. J. W. Lee, J. Lee, and H. C. Kim, National Inst. Math. Sci. 8, 1 (2007) [arXiv:0709.0047 [hep-th]].

    Google Scholar 

  17. J. W. Lee, H. C. Kim and J. Lee, Mod. Phys. Lett. A 25, 257 (2010) [arXiv:0803.1987 [hep-th]].

    Article  ADS  Google Scholar 

  18. M. Srednicki, Phys. Rev. Lett. 71, 666 (1993).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. H. Reeh and S. Schlieder, Nuovo Cimento 22, 1051 (1961).

    Article  MathSciNet  Google Scholar 

  20. S. Summers and R. Werner, Phys. Lett. A 110, 257 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  21. R. M¨uller and C. O. Lousto, Phys. Rev. D 52, 4512 (1995).

    Article  ADS  Google Scholar 

  22. M. Srednicki, Phys. Rev. Lett. 71, 666 (1993).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. J. D. Bekenstein, Phys. Rev. D49, 1912 (1994).

    ADS  MathSciNet  Google Scholar 

  24. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2001).

    Google Scholar 

  25. T. Padmanabhan, Rept. Prog. Phys. 73, 046901 (2010) [arXiv:0911.5004 [gr-qc]].

    Article  ADS  Google Scholar 

  26. T. Padmanabhan, Class. Quant. Grav. 21, 4485 (2004).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. M. Li and Y. Wang, Phys. Lett. B 687, 243 (2010) [arXiv:1001.4466 [hep-th]].

    Article  ADS  Google Scholar 

  28. Y. Zhang, Y. Gong and Z. H. Zhu, Int. J. Mod. Phys. D 20, 1505 (2011) [arXiv:1001.4677 [hep-th]].

    Article  ADS  MATH  Google Scholar 

  29. S. W. Wei, Y. X. Liu and Y. Q. Wang, Commun. Theor. Phys. 56, 455 (2011) [arXiv:1001.5238 [hep-th]].

    Article  ADS  MATH  Google Scholar 

  30. D. A. Easson, P. H. Frampton and G. F. Smoot, Phys. Lett. B 696, 273 (2011) [arXiv:1002.4278 [hep-th]].

    Article  ADS  Google Scholar 

  31. M. Li, Phys. Lett. B 603, 1 (2004).

    Article  ADS  Google Scholar 

  32. Q.-G. Huang and M. Li, Journal of Cosmology and Astroparticle Physics 08, 013 (2004).

    Article  ADS  Google Scholar 

  33. Q.-G. Huang and Y. Gong, JCAP 2004, 006 (2004).

    Article  Google Scholar 

  34. E. Komatsu et al. [WMAP Collaboration], Astrophys. J. Suppl. 192, 18 (2011) [arXiv:1001.4538 [astro-ph.CO]].

    Article  ADS  Google Scholar 

  35. E. Komatsu et al., Astrophys. J. Suppl. 180, 330 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JW., Kim, HC. & Lee, J. Gravity as a quantum entanglement force. Journal of the Korean Physical Society 66, 1025–1030 (2015). https://doi.org/10.3938/jkps.66.1025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1025

Keywords

Navigation