Skip to main content
Log in

Thermometry for Dirac fermions in graphene

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We use both the zero-magnetic-field resistivity and the phase coherence time determined by weak localization as independent thermometers for Dirac fermions (DF) in multilayer graphene. In the high current (I) region, there exists a simple power law T DF I ~0.5, where T DF is the effective Dirac fermion temperature for epitaxial graphene on SiC. In contrast, T DF I ~1 in exfoliated multilayer graphene. We discuss possible reasons for the different power laws observed in these multilayer graphene systems. Our experimental results on DF-phonon scattering may find applications in graphene-based nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. Y. Zhang, Y.-W. Tan, H. L. Stormer and P. Kim, Nature 438, 201 (2005).

    Article  ADS  Google Scholar 

  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature 438, 197 (2005).

    Article  ADS  Google Scholar 

  4. X. Du, I. Skachko, F. Duerr, A. Luican and E. Y. Andrei, Nature 462, 192 (2009).

    Article  ADS  Google Scholar 

  5. K. I. Bolotin, F. Ghahari,M. D. Shulman, H. L. Stormer and P. Kim, Nature 462, 196 (2009).

    Article  ADS  Google Scholar 

  6. B. E. Feldman, B. Krauss, J. H. Smet and A. Yacoby, Science 337, 1196 (2012).

    Article  ADS  Google Scholar 

  7. P. R. Nair, P. Blake, A. N. Grigorenko, K. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, Science 320, 1308 (2008).

    Article  ADS  Google Scholar 

  8. C. Lee, X. Wei, J. W. Kysar and J. Hone, Science 321, 385 (2008).

    Article  ADS  Google Scholar 

  9. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau Nano Lett. 8, 902 (2008).

    Article  ADS  Google Scholar 

  10. J. Wang, Y. Kwak, I.-Y. Lee, S. Maeng and G.-H. Kim, Carbon 50, 4061 (2012).

    Article  Google Scholar 

  11. J. Wang, B. Singh, S. Maeng, H.-I. Joh and G.-H. Kim, Appl. Phys. Lett. 103, 083112 (2013).

  12. G. Eda, Y.-Y. Lin, S. Miller, C.-W. Chen, W.-F. Su and M. Chhowalla, Appl. Phys. Lett. 92, 233305 (2008).

  13. P. Roy, A. P. Periasamy, C. Chuang, Y.-R. Liou, Y. F. Chen, J. Joly, C.-T. Liang and H.-T. Chang, New J. Chem. 38, 4946 (2014).

    Article  Google Scholar 

  14. A. K. M. Wennberg, S. N. Ytterboe, C. M. Gould, H. M. Bozler, J. Klem and H. Morkoc, Phys. Rev. B 34, 4409 (1986).

    Article  ADS  Google Scholar 

  15. N. J. Appleyard, J. T. Nicholls, M. Y. Simmons, W. R. Tribe and M. Pepper, Phys. Rev. Lett. 81, 3491 (1998).

    Article  ADS  Google Scholar 

  16. B. K. Ridley, Rep. Prog. Phys. 54, 169 (1991).

    Article  ADS  Google Scholar 

  17. D. R. Leadley, R. J. Nicholas, J. J. Harris and C. T. Foxon, Semicond. Sci. Technol. 4, 879 (1989).

    Article  ADS  Google Scholar 

  18. N. Balkan, H. Celik, A. J. Vickers and M. Cankurtaran, Phys. Rev. B 52, 17210 (1995).

    Article  ADS  Google Scholar 

  19. P. Z. Chen, L.-H. Lin, C.-T. Liang, J.-Y. Lin, J.-H. Chen, M. Y. Simmons and D. A. Ritchie, J. Korean Phys. Soc. 50, 1662 (2007).

    Article  ADS  Google Scholar 

  20. C.-S. Hsu, E. S. Kannan, J.-C. Portal, C.-T. Liang, C. F. Huang and S.-D. Lin, Solid State Commun. 156, 45 (2013).

    Article  ADS  Google Scholar 

  21. A. Mittal, R. G. Wheeler, M. W. Keller, D. E. Prober and R. N. Sacks, Surf. Sci. 361/362, 537 (1996).

    Article  ADS  Google Scholar 

  22. C.-T. Liang et al., Appl. Phys. Lett. 92, 152117 (2008).

  23. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  24. A. M. R. Baker et al., Phys. Rev. B 87, 045414 (2013).

  25. A. Tzalenchuk et al., Nat. Nanotechnol. 5, 186 (2010).

    Article  ADS  Google Scholar 

  26. M. A. Real, E. A. Lass, F.-H. Liu, T. Shen, G. R. Jones, J. A. Soons, D. B. Newell, A. V. Davydov and R. E. Elmquist, IEEE Trans. Instrum. Meas. 62, 1454 (2013).

    Article  Google Scholar 

  27. F.-H. Liu et al., Nanoscale Res. Lett. 8, 360 (2013).

    Article  ADS  Google Scholar 

  28. L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov and A. K. Geim, Science 320, 356 (2008).

    Article  ADS  Google Scholar 

  29. S.-H. Song, D. Shahar, D. C. Tsui, Y. H. Xie and D. Monroe, Phys. Rev. Lett. 78, 2200 (1997).

    Article  ADS  Google Scholar 

  30. T.-Y. Huang et al., Physica E 22, 240 (2004).

    Article  ADS  Google Scholar 

  31. D. R. Hang, C.-T. Liang, J. R. Juang, T.-Y. Huang, W. K. Hung, Y. F. Chen, G.-H. Kim, J.-H. Lee and J.-H. Lee, J. Appl. Phys. 93, 2055 (2003).

    Article  ADS  Google Scholar 

  32. C.-T. Liang, M. Y. Simmons, C. G. Smith, G. H. Kim, D. A. Ritchie and M. Pepper, Phys. Rev. B 60, 10687 (1999).

    Article  ADS  Google Scholar 

  33. J. R. Juang, T.-Y. Huang, T.-M. Chen, M.-G. Lin, Y. Lee, C.-T. Liang, D. R. Hang, Y. F. Chen and J.-I. Chyi, J. Appl. Phys. 94, 3181 (2003).

    Article  ADS  Google Scholar 

  34. T.-M. Chen, C.-T. Liang, M. Y. Simmons, D. A. Ritchie and M. Pepper, Chin. J. Phys. 42, 307 (2004).

    Google Scholar 

  35. J. H. Chen et al., J. Korean Phys. Soc. 48, 1539 (2006).

    Google Scholar 

  36. .-K. Lin et al., J. Appl. Phys. 97, 046101 (2005).

    Article  ADS  Google Scholar 

  37. W. H. Teh, C.-T. Liang, M. A. Graham and C. G. Smith, IEEE/ASME Journal of Microelectromechanical Systems 12, 641 (2003).

    Article  Google Scholar 

  38. R. Nemutudi, C.-T. Liang, M. J. Murphy, I. Farrer, C. G. Smith, D. A. Ritchie, D. M. Pepper and G. A. C. Jones, J. Korean Phys. Soc. 48, 1312 (2006).

    Google Scholar 

  39. S.-T. Lo, H. E. Lin, S.-W. Wang, H.-D. Lin, Y.-C. Chin, H.-H. Lin, J.-C. Lin and C.-T. Liang, Nanoscale Res. Lett. 7, 640 (2012).

    Article  ADS  Google Scholar 

  40. T.-Y. Huang, C. P. Huang, Y. H. Chiu, C.-T. Liang, M. Y. Simmons and D. A. Ritchie, Microelectronics Journal 36, 466 (2005).

    Article  Google Scholar 

  41. K. Y. Chen et al., J. Korean Phys. Soc. 55, 173 (2009).

    Article  Google Scholar 

  42. K. S. Cho, C.-T. Liang, Y. F. Chen and J. C. Fan, J. Korean Phys. Soc. 53, 2419 (2008).

    Article  ADS  Google Scholar 

  43. Y.-T. Wang, C.-K. Yang, S.-D. Lin and C.-T. Liang, J. Korean Phys. Soc. 64, 1407 (2014); Y.-T. Wang, T.-P. Woo, S.-T. Lo, G.-H. Kim and C.-T. Liang, J. Korean Phys. Soc. 64, 1572 (2014).

    Article  ADS  Google Scholar 

  44. S.-T. Lo, F.-H. Liu, C.-S. Hsu, C. Chuang, L.-I. Huang, Y. Fukuyama, Y. Yang, R. E. Elmquist and C.-T. Liang, Nanotechnol. 25, 245201 (2014).

    Article  ADS  Google Scholar 

  45. C.-T. Liang and S.-T. Lo, Chin. J. Phys. 52, 1374 (2014).

    Google Scholar 

  46. S.-T. Lo, S.-W. Lin, Y.-T. Wang, S.-D. Lin and C.-T. Liang, Sci. Rep. 4, 5438 (2014).

    ADS  Google Scholar 

  47. H. Ho, C. Chuang, Y.-T. Wang and C.-T. Liang, Appl. Phys. Lett. 105, 012106 (2014).

  48. E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando and B. L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006).

    Article  ADS  Google Scholar 

  49. S. Lara-Avila, A. Tzalenchuk, S. Kubatkin, R. Yakimova, T. J. B. M. Janssen, K. Cedergren, T. Bergsten and V. Fal’ko, Phys. Rev. Lett. 107, 166602 (2011).

    Article  ADS  Google Scholar 

  50. H. Scherer, L. Schweitzer, F. J. Ahlers, L. Bliek, R. Losch and W. Schlapp, Semicond. Sci. Technol. 10, 959 (1995).

    Article  ADS  Google Scholar 

  51. T. Brandes, L. Schweitzer and B. Kramer, Phys. Rev. Lett. 72, 3582 (1994).

    Article  ADS  Google Scholar 

  52. S. Koch, R. J. Haug, K. von Klitzing and K. Ploog, Semicond. Sci. Technol. 10, 209 (1995).

    Article  ADS  Google Scholar 

  53. H. P. Wei, L. W. Engel and D. C. Tsui, Phys. Rev. B 50, 14609 (1994).

    Article  ADS  Google Scholar 

  54. D. Huang, S. K. Lyo and G. Gumbs, Phys. Rev. B 79, 155308 (2009).

    Article  ADS  Google Scholar 

  55. S. S. Kubakaddi, Phys. Rev. B 79, 075417 (2009).

    Article  ADS  Google Scholar 

  56. A. C. Betz et al., Phys. Rev. Lett. 109, 056805 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tak-Pong Woo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, FH., Hsu, CS., Lo, ST. et al. Thermometry for Dirac fermions in graphene. Journal of the Korean Physical Society 66, 1–6 (2015). https://doi.org/10.3938/jkps.66.1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1

Keywords

Navigation