Skip to main content
Log in

Fabrication of low-loss optical interconnected waveguide using a replicated seamless large-area polymeric mold

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This study proposes a simple cost-effective method of optical interconnection with a view to minimizing and overcoming the excess loss caused by the alignment tolerance between optical waveguides in the integration/interface process in order to fabricate a large-area optical circuit layer. To that end, a large-area polymeric mold with a continuous channel structure was fabricated. The fabrication process consisted of fabricating the primary polymer mold by using the original master in the polymer replication process and involved the simple alignment of the replicated polymeric mold so that only some sections overlapped with the original master. The dimensions (i.e., width and thickness) of the cavity of the polymeric mold were identical to those of the original master. When the original master was inserted into the cavity of the polymeric mold after having separated the original master and the polymeric mold, the rib structures of the original master and the channel structures of the polymeric mold could be arranged in a passive alignment. A large-area polymeric mold with a continuous channel structure was fabricated by coating a polymeric solution onto the non-overlapping original master. For this study, a polymeric multimode optical waveguide with a length of 200 mm was fabricated using the original master with a length of 130 mm with 50 straight ribs. The excess loss of the proposed large-area multimode optical waveguide interconnection, compared with the original master-based optical waveguide, was 0 dB at 850 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. Rho, S. H. Hwang, J. W. Lim, G. W. Kim, C. H. Cho and W. J. Lee, Opt. Express 17, 1215 (2009).

    Article  ADS  Google Scholar 

  2. J. H. Ryu, T. H. Lee, I. K. Cho, C. S. Kim and M. Y. Jeong, Opt. Express 19, 1183 (2011).

    Article  ADS  Google Scholar 

  3. W. Ni, X. Wu and J. Wu, Opt. Express 17, 1194 (2009).

    Article  ADS  Google Scholar 

  4. F. Wang, F. Liu and A. Adibi, Opt. Express 17, 10514 (2009).

    Article  ADS  Google Scholar 

  5. S. Uhlig, L. Frohlich, M. Chen, N. A. Staufenbiel, G. Lang, H. Schroder, R. Houbertz, M. Popall and M. Robertsson, IEEE Trans. Adv. Packag. 29, 158 (2006).

    Article  Google Scholar 

  6. H. Kim, Y. M. Im, K. W. Lee, S. H. Cho, J. G. Park and B. S. Yoo, J. Korean Phys. Soc. 57, 1589 (2010).

    Article  ADS  Google Scholar 

  7. J. H. Kim, J. S. Choe, C. J. Youn, D. J. Kim, Y. H. Kwon and E. S. Nam, ETRI J. 34, 946 (2012).

    Article  Google Scholar 

  8. S. Kim, S. H. Ahn and S. S. Park, ETRI J. 35, 578 (2013).

    Article  Google Scholar 

  9. J. H. Ryu, T. H. Lee, S. H. Oh, S. U. Cho, C. S. Kim and M. Y. Jeong, Curr. Appl. Phys. 9, e7 (2009).

    Article  ADS  Google Scholar 

  10. J. H. Ryu, P. J. Kim, C. S. Cho, E. H. Lee, C. S. Kim and M. Y. Jeong, Opt. Express 19, 8571 (2011).

    Article  ADS  Google Scholar 

  11. W. J. Lee, S. H. Hwang, J. W. Lim and B. S. Rho, IEEE Photon. Technol. Lett. 21, 12 (2009).

    Article  ADS  Google Scholar 

  12. T. Ishigure and Y. Nitta, Opt. Express 18, 14191 (2010).

    Article  Google Scholar 

  13. X. Dou, X. Wang, H. Huang, X. Lin, D. Ding, D. Z. Pan and R. T. Chen, Opt. Express 18, 378 (2010).

    Article  ADS  Google Scholar 

  14. S. H. Hwang, W. J. Lee, M. J. Kim, E. J. Jung and B. S. Rho, Opt. Quant. Electron. 44, 189 (2012).

    Article  Google Scholar 

  15. S. Y. Chou, P. R. Krauss and P. J. Renstrom, J. Vac. Sci. Technol. B 14, 4129 (1996).

    Article  Google Scholar 

  16. S. H. Oh, S. U. Cho, C. S. Kim, Y. G. Han, C. S. Cho and M. Y. Jeong, Microelectron. Eng. 88, 2900 (2011).

    Article  Google Scholar 

  17. J. T. Kim, B. C. Kim, M. Y. Jeong and M. S. Lee, J. Mater. Process. Technol. 146, 163 (2004).

    Article  Google Scholar 

  18. H. Mizuno, O. Sugihara, S. Jordan, N. Okamoto, M. Ohama and T. Kaino, J. Lightwave Technol. 24, 919 (2006).

    Article  ADS  Google Scholar 

  19. A. H. Cannon and W. P. King, J. Micromech. Microeng. 19, 095016 (2009).

    Article  ADS  Google Scholar 

  20. Y. T. Cho, S. Kwon, J. W. Seo, J. G. Kim, J. W. Cho, J. W. Park, H. Kim and S. W. Lee, Microelectron. Eng. 86, 2417 (2009).

    Article  Google Scholar 

  21. A. Neyer, B. Wittmann and M. Johnck, IEEE J. Sel. Top. Quantum Electron. 5, 193 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung Yung Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, J.H., Lee, B.K., Baek, KH. et al. Fabrication of low-loss optical interconnected waveguide using a replicated seamless large-area polymeric mold. Journal of the Korean Physical Society 65, 450–456 (2014). https://doi.org/10.3938/jkps.65.450

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.450

PACS numbers

Keywords

Navigation