Skip to main content
Log in

Al2O3 Doping of TiO2 electrodes and applications in dye-sensitized solar cells

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Dye-sensitized solar cells (DSSCs) have been intensively studied since their discovery in 1991. DSSCs have been extensively researched over the past decades as cheaper alternatives to silicon solar cells due to their high energy-conversion efficiency and their low production cost. However, some problems need to be solved in order to enhance the efficiency of DSSCs. In particular, the electron recombination that occurs due to the contact between the transparent conductive oxide (TCO) and a redox electrolyte is one of the main limiting factors of efficiency. In this work, we report for the first time the improvement of the photovoltaic characteristics of DSSCs by doping TiO2 with Al2O3. DSSCs were constructed using composite particles of Al2O3-doped TiO2 and TiO2 nanoparticles. The DSSCs using Al2O3 showed the maximum conversion efficiency of 6.29% due to effective electron transport. DSSCs based on Al2O3-doped TiO2 films showed better photovoltaic performance than cells fabricated with only TiO2 nanoparticles. This result is attributed to the prevention of electron recombination between electrons in the TiO2 conduction band with holes in the dye or the electrolyte. There mechanism is suggested based on impedance results, which indicated improved electron transport at the TiO2/dye/electrolyte interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. O’Regan and M. Grätzel, Nature 353, 737 (1991).

    Article  Google Scholar 

  2. M. Gratzel, Prog. Photovoltaics: Res. Appl. 14, 429 (2006).

    Article  Google Scholar 

  3. A. F. Nogueria, C. Longo and M. A. De paoli, Coord. Chem. Rev. 248, 1455 (2004).

    Article  Google Scholar 

  4. B. A. Gregg, Coord. Chem. Rev. 248, 1215 (2004).

    Article  Google Scholar 

  5. S. Chappel, S. G. Chen and A. Zaban, Langmuir 18, 3336 (2002).

    Article  Google Scholar 

  6. D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles and I. Riess, J. Phys. Chem. B 104, 2053 (2000).

    Google Scholar 

  7. M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, Sol. Energy Mater. Sol. Cells 90, 1331 (2006).

    Article  Google Scholar 

  8. C. S. Chou, R. Y. Yang, C. K. Yeh and Y. J. Lin, Powder Technol. 194, 95 (2009).

    Article  Google Scholar 

  9. J. B. Xia, N. Masaki, K. J. Jiang, Y. Wada and S. Yanagida, Chem. Lett. 35, 252 (2006).

    Article  Google Scholar 

  10. K. H. Ko, Y. C. Lee and Y. J. Jung, J. Colloid Interface Sci. 283, 482 (2005).

    Article  Google Scholar 

  11. H. Alarcon, G. Boschloo, P. Mendoza, J. L. Solis and A. Hagfeldt, J. Phys. Chem. B, 109, 18483 (2005).

    Google Scholar 

  12. S. G. Chen, S. Chappel, Y. Diamant and A. Zaban, Chem. Mater. 13, 4629 (2001).

    Article  Google Scholar 

  13. Z.-S. Wang, C.-H. Huang, Y.-Y. Huang, Y.-J. Hou, P.-H. Xie, B.-W. Zhang and H.-M. Cheng, Chem. Mater. 13, 678 (2001).

    Article  Google Scholar 

  14. H. S. Jung, J. K. Lee, M. Nastasi, S. W. Lee, J. Y. Kim, J. S. Park, K. S. Hong and H. Shin, Langmuir 21, 10332 (2005).

    Article  Google Scholar 

  15. S. Wu, H. Han, Q. Tai, J. Zhang, S. Xu, C. Zhou and Y. Yang, J. Power Sources 182, 119 (2008).

    Article  Google Scholar 

  16. H. Tajizadegan, M. Jafari, M. Rashidzadeh and A. S. Teluri, Appl. Surf. Sci. 276, 317 (2013).

    ADS  Google Scholar 

  17. Y. S. Jin, K. H. Kim, S. J. Park, J. H. Kim and H. W. Choi, J. Korean Phys. Soc. 57, 1049 (2010).

    Article  ADS  Google Scholar 

  18. Y. S. Jin, K. H. Kim, S. J. Park, H. H. Yoon and H. W. Choi, J. Nanosci Nanotech. 11, 10971 (2011).

    Article  Google Scholar 

  19. K. Pan, Y. Dong, C. Tian, W. Zhou, G. Tian, B. Zhao and H. Fu, Electrochim. Acta 54, 7350 (2009).

    Article  Google Scholar 

  20. J. A. Mikroyannidis, M. M. Strlianakis, M. S. Roy, P. Suresh and G. D. Sharma, J. Power Sources 194, 1171 (2009).

    Article  Google Scholar 

  21. L. Bay, K. West, B. W. Jensen and T. Jacobsen, Sol. Energy Mater. So Cells 90, 341 (2006).

    Article  Google Scholar 

  22. L. Y. Lin, C. P. Lee, R. Vittal and K. C. Ho, J. Power Sources 195, 4344 (2010).

    Article  Google Scholar 

  23. H. Yu, S. Zhang, H. Zhao, G. Will and P. Liu, Electrochim. Acta 54, 1319 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Wook Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eom, T.S., Kim, K.H., Bark, C.W. et al. Al2O3 Doping of TiO2 electrodes and applications in dye-sensitized solar cells. Journal of the Korean Physical Society 65, 368–371 (2014). https://doi.org/10.3938/jkps.65.368

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.368

Keywords

Navigation