Advertisement

Journal of the Korean Physical Society

, Volume 65, Issue 11, pp 1743–1748 | Cite as

Focusing performance and thermal property of carbon-nanotube emitter-based X-ray sources

  • Seung Ho Lee
  • Wan Sun Kim
  • Je Hwang Ryu
  • Kyung Sook Kim
  • Hun Kuk ParkEmail author
Article
  • 71 Downloads

Abstract

Carbon-nanotube (CNT) emitter-based X-ray sources have been extensively investigated as new imaging devices. The electron-beam trajectory in the CNT emitter-based X-ray sources were simulated to determine the optimized conditions for high focusing performance and limited thermal damage to the anode. The beam trajectory from the cathode to the anode was simulated, and the focal spot size (FSS) of the beam was determined by varying the structure of the electrode in the X-ray system. The temperature change of the anode caused by the electron-beam was calculated. The effects of electrode voltage and of the distance between the electrode and the anode on the FSS were significant while the effect of electrode thickness was small in all structures. When the electron-beam was emitted with an FSS of 170 μm and a power of 130 W, the thermal damage to the anode was reduced by using a 2-ms pulsed-voltage operation for a duration of 8 ms.

Keywords

Carbon nanotube X-ray source Focal spot size Thermal analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. W. Wong, P. E. Sheehan and C. M. Lieber, Science 277, 1971 (1997).CrossRefGoogle Scholar
  2. [2]
    P. Kim, L. Shi, A. Majumdar and P. McEuen, Phys. Rev. Lett. 87, 215502 (2001).ADSCrossRefGoogle Scholar
  3. [3]
    W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham and H. Park, Nature. 411, 665 (2001).ADSCrossRefGoogle Scholar
  4. [4]
    W. B. Choi et al., Appl. Phys. Lett. 75, 3129 (1999).ADSCrossRefGoogle Scholar
  5. [5]
    Y. Saito, K. Hamaguchi, R. Mizushima, S. Uemura, T. Nagasako, J. Yotani and T. Shimojo, Appl. Surf. Sci. 146, 305 (1999).ADSCrossRefGoogle Scholar
  6. [6]
    X. Qian, R. Rajaram, X. Calderon-Colon, G. Yang, T. Phan, D. S. Lalush, J. Lu and O. Zhou, Med. Phys. 36, 4389 (2009).CrossRefGoogle Scholar
  7. [7]
    H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi and F. Okuyama, Appl. Phys. Lett. 78, 2578 (2001).ADSCrossRefGoogle Scholar
  8. [8]
    I. Aamir, S. K. Kim, S. H. Heo and S. O. Cho, J. Kor. Vac. Soc. 15, 103 (2006).Google Scholar
  9. [9]
    J. H. Ryu, Y. J. Eom, W. S. Kim, S. H. Lee, H. K. Park and K. C. Park, J. Nano Nano. 13, 7100 (2013).CrossRefGoogle Scholar
  10. [10]
    Y. Cho and P. Munro, Med. Phys. 29, 2101 (2002).CrossRefGoogle Scholar
  11. [11]
    Z. Liu, J. Zhang, G. Yang, Y. Cheng, O. Zhou and J. Lu, Rev. Sci. Instrum. 77, 054302 (2006).ADSCrossRefGoogle Scholar
  12. [12]
    J. Shan, O. Zhou and J. Lu, SPIE. Med. Imag. 8313, 831300 (2012).ADSGoogle Scholar
  13. [13]
    W. S. Chang, H. Y. Choi and J. U. Kim, Jpn. J. Appl. Phys. 45, 7175 (2006).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2014

Authors and Affiliations

  • Seung Ho Lee
    • 1
    • 2
  • Wan Sun Kim
    • 1
    • 2
  • Je Hwang Ryu
    • 1
    • 3
  • Kyung Sook Kim
    • 1
    • 2
    • 3
  • Hun Kuk Park
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Biomedical Engineering, College of MedicineKyung Hee UniversitySeoulKorea
  2. 2.Program of Medical EngineeringKyung Hee UniversitySeoulKorea
  3. 3.Healthcare Industry Research InstituteKyung Hee UniversitySeoulKorea

Personalised recommendations