Skip to main content
Log in

Hydrophobic perfluoropolymer thin-film encapsulation for enhanced stability of inverted polymer solar cells

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report hydrophobic perfluoropolymer thin-film encapsulation for enhancing the air ambient stability of inverted polymer solar cells (PSCs). Using a perfluoropolymer, poly(perfluorodecylmethacrylate) (PFDMA), as an encapsulation material, an orthogonal process that enables a solution-processing of encapsulation polymers to be coated directly on the inverted PSCs without damaging the underlying organic components is possible. Particularly, with PFDMA encapsulation, the air ambient stability was significantly enhanced, showing only an efficiency reduction of 23.3% after 456 hours of air exposure. The enhanced device stability can be attributed to the hydrophobic property of the PFDMA surface, which suppresses the transmission of air ambient gas molecules into the solar cells. Thus, the PFDMA coating can be beneficial in achieving high-stability organic electronics by using an easy-to-use route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante and A. J. Heeger, Science 317, 222 (2007).

    Article  ADS  Google Scholar 

  2. B. C. Thompson and J. M. J. Frechet, Angew. Chem. Int. Ed. 47, 58 (2008).

    Article  Google Scholar 

  3. W. Z. Cai, X. Gong and Y. Cao, Sol. Energy Mater. Sol. Cells 94, 114 (2010).

    Article  Google Scholar 

  4. J. You et al., Nature Comm. 4, 1446 (2013).

    Article  ADS  Google Scholar 

  5. Y. M. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy and A. J. Heeger, Adv. Mater. 23, 2226 (2011).

    Article  Google Scholar 

  6. K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley and J. R. Durrant, Sol. Energy Mater. Sol. Cells 90, 352 (2006).

    Article  Google Scholar 

  7. G. Li, C.-W. Chu, V. Shrotriya, J. Huang and Y. Yang, Appl. Phys. Lett. 88, 253503 (2006).

    Article  ADS  Google Scholar 

  8. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis and D. S. Ginley, Appl. Phys. Lett. 89, 143517 (2006).

    Article  ADS  Google Scholar 

  9. S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O’Malley and A. K.-Y. Jen, Appl. Phys. Lett. 92, 253301 (2008).

    Article  ADS  Google Scholar 

  10. Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, Adv. Mater. 23, 1679 (2011).

    Article  Google Scholar 

  11. M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis and C. J. Brabec, Appl. Phys. Lett. 89, 233517 (2006).

    Article  ADS  Google Scholar 

  12. Y. J. Cheng, F. Y. Cao, W. C. Lin, C. H. Chen and C. H. Hsieh, Chem. Mater. 23, 1512 (2011).

    Article  Google Scholar 

  13. Q. L. Song, M. L. Wang, E. G. Obbard, X. Y. Sun, X. M. Ding, X. Y. Hou and C. M. Li, Appl. Phys. Lett. 89, 251118 (2006).

    Article  ADS  Google Scholar 

  14. A. Seemann, T. Sauermann, C. Lungenschmied, O. Armbruster, S. Bauer, H.-J. Egelhaaf and J. Hauch, Sol. Energy 85, 1238 (2011).

    Article  ADS  Google Scholar 

  15. Y. Matsuo, A. Ozu, N. Obata, N. Fukuda, H. Tanaka and E. Nakamura, Chem. Commun. 48, 3878 (2012).

    Article  Google Scholar 

  16. G. L. Graff, R. E. Williford and P. E. Burrows, J. Appl. Phys. 96, 1840 (2004).

    Article  ADS  Google Scholar 

  17. C. Charton, N. Schiller, M. Fahland, A. Hollander, A. Wedel and K. Noller, Thin Solid Films 502, 99 (2006).

    Article  ADS  Google Scholar 

  18. J. S. Park, H. Chae, H. K. Chung and S. I. Lee, Semicond. Sci. Technol. 26, 034001 (2011).

    Article  ADS  Google Scholar 

  19. K. M. Midthun, P. G. Taylor, C. Newby, M. Chatzichristidi, P. S. Petrou, J. K. Lee, S. E. Kakabakos, B. A. Baird and C. K. Ober, Biomacromolecules 14, 993 (2013).

    Article  Google Scholar 

  20. A. A. Zakhidov, J. K. Lee, H. H. Fong, J. A. DeFranco, M. Chatzichristidi, P. G. Taylor, C. K. Ober and G. G. Malliaras, Adv. Mater. 20, 3481 (2008).

    Article  Google Scholar 

  21. K. Sivula, C. K. Luscombe, B. C. Thompson and J. M. J. Fréchet, J. Am. Chem. Soc. 128, 13988 (2006)

    Article  Google Scholar 

  22. J. D. Servaites, S. Yeganeh, T. J. Marks and M. A. Ratner, Adv. Func. Mater. 20, 97 (2010).

    Article  Google Scholar 

  23. M. P. Nikiforov, J. Strzalka and S. B. Darling, Sol. Energy Mater. Sol. Cells 110, 36 (2013).

    Article  Google Scholar 

  24. S. Xu and W. Liu, J. Polym. Sci. Part B: Polym. Phys. 46, 1000 (2008).

    Article  ADS  Google Scholar 

  25. L. Barthel-Rosa, Chem. Rev. 190–192, 587 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Kyu Park or Yong-Hoon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JH., Park, S.K., Lee, JW. et al. Hydrophobic perfluoropolymer thin-film encapsulation for enhanced stability of inverted polymer solar cells. Journal of the Korean Physical Society 65, 1448–1452 (2014). https://doi.org/10.3938/jkps.65.1448

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.1448

Keywords

Navigation