Skip to main content
Log in

Study of the ionic conduction mechanism based on carboxymethyl cellulose biopolymer electrolytes

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Biodegradable carboxymethyl cellulose (CMC) doped with various compositions of NH4Br biopolymer electrolytes (BE) were successfully prepared via a solution-cast technique. The ionic conductivity for the CMC-NH4Br BE system was measured by using impedance spectroscopy, and the highest ambient temperature conductivity was observed to be 1.12 × 10−4 S cm−1 for the sample containing 25-wt.% NH4Br. The temperature dependence of the ionic conductivity revealed that the BE system followed an Arrhenius behavior. Jonscher’s universal power law was applied to analyze the AC conductivity of the highest conducting sample in the BE system, and the results indicate that the conduction is due to small polaron hopping (SPH) caused by a non-adiabatic mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Riess, Solid State Ionics 136, 1119 (2000).

    Article  Google Scholar 

  2. A. Bozkurt and W. H. Meyer, Solid State Ionics 138, 259 (2001).

    Article  Google Scholar 

  3. J. R. Stevens, W. Wieczorek, D. Raducha and K. R. Jeffrey, Solid State Ionics 97, 347 (1997).

    Article  Google Scholar 

  4. J. A. Asensio, S. Borrós and P. Gómez-Romero, J. Membrane Sci. 241, 89 (2004).

    Article  Google Scholar 

  5. X. Qu, A. Wirsen and A. C. Albertsson, Polymer 41, 4841 (2000).

    Article  Google Scholar 

  6. M. N. Khalid, F. Agnely, N. Yagoubi, J. L. Grossiord and G. Couarraze, Eur. J. Pharm. Sci. 15, 425 (2002).

    Article  Google Scholar 

  7. J. Adebahr, N. Byrne, M. Forsyth, D. R. MacFarlane and P. Jacobsson, Electrochim. Acta 48, 2099 (2003).

    Article  Google Scholar 

  8. M. S. Michael, M. M. E. Jacob, S. R. S. Prabaharan and S. Radhakrishna, Solid State Ionics 98, 167 (1997).

    Article  Google Scholar 

  9. Ellen Raphael, César O. Avellaneda, B. Manzolli and A. Pawlicka, Electrochim. Acta 55, 1455 (2010).

    Article  Google Scholar 

  10. R. Baskaram, S. Selvasekarapandian, N. Kuwata, J. Kawamura and T. Hattori, Mater. Chem. Phys. 98, 155 (2004).

    Google Scholar 

  11. A. S. Samsudin, Wan M. Khairul and M. I. N. Isa, J. Non-cryst. Solids 358, 1104 (2012).

    Article  Google Scholar 

  12. J. R. MacCallum and C. A. Vincent (Eds.), Polymer Electrolyte Review — I & II (Elsevier, London, 1987).

    Google Scholar 

  13. F. Kremer and A. Schonhals (Eds.), Broad Band Dielectric Spectroscopy (Springer-Verlag, Berlin Heidelberg, New York, 2003).

    Book  Google Scholar 

  14. P. Barbucci, A. Magnani and M. Consumi, Macromolecules 33, 7475 (2000).

    Article  ADS  Google Scholar 

  15. K. H. Kamarudin and M. I. N. Isa, Int. J. Phys. Sci. 8, 1581 (2013).

    Google Scholar 

  16. W. F. Ng, M. N. Chai and M. I. N. Isa, Avd. Mat. Res. 895, 130 (2014).

    Google Scholar 

  17. E. El Shafee, Carbohyd. Polym. 31, 93 (1996).

    Article  Google Scholar 

  18. A. S. Samsudin and M. I. N. Isa, Int. J. Poly. Mat. 61, 30 (2012).

    Article  Google Scholar 

  19. A. S. Samsudin and M. I. N. Isa, J. Appl. Sci. 12, 174 (2012).

    Article  ADS  Google Scholar 

  20. A. S. Samsudin, H. M. Lai and M. I. N. Isa, Electrochim. Acta 129, 1 (2014).

    Article  Google Scholar 

  21. S. R. Majid and A. K. Arof, Physica B 355, 78 (2005).

    Article  ADS  Google Scholar 

  22. L. S. Ng and A. A. Mohamad, J. Power Sources 163, 382 (2006).

    Article  Google Scholar 

  23. T. Miyamoto and K. Shibayama, J. Appl. Phys. 44, 5372 (1973).

    Article  ADS  Google Scholar 

  24. M. F. Z. Kadir, S. R. Majid and A. K. Arof, Electrochim Acta 55, 1475 (2010).

    Article  Google Scholar 

  25. X. Ma, J. Yu, K. He and N. Wang, Macromol. Mater. Eng. 292, 503 (2007).

    Article  Google Scholar 

  26. S. Rajendran, M. Sivakumar and R. Subadevi, Mater. Lett. 58, 641 (2000).

    Article  Google Scholar 

  27. A. S. Samsudin, E. C. H. Kuan and M. I. N. Isa, Int. J. Polym. Anal. Ch. 16, 477 (2011).

    Article  Google Scholar 

  28. J. M. G. Cowie and G. H. Spence, Solid State Ionics 109, 139 (1998).

    Article  Google Scholar 

  29. N. H. Idris, S. R. Majid, A. S. A. Khiar, M. F. Hassan and A. K. Arof, Ionics 11, 375 (2005).

    Article  Google Scholar 

  30. F. S. Howell, R. A. Bose, P. B. Macedo and C. T. Moynihan, J. Phys. Chem. 78, 639 (1974).

    Article  Google Scholar 

  31. R. Mishra, N. Baskaran, P. A. Ramakrishnan and K. J. Rao, Solid State Ionics 112, 261 (1998).

    Article  Google Scholar 

  32. K. P. Singh, P. N. Gupta and R. P. Singh, J. Polymer Materials (Oxford & IBH Pub.) 9, 131 (1992).

    Google Scholar 

  33. A. S. A. Khiar, R. Puteh and A. K. Arof, Physica B 373, 23 (2006).

    Article  ADS  Google Scholar 

  34. S. Ramesh and A. K. Arof, Mater. Sci. Eng. B — Adv. 85, 11 (2001).

    Article  Google Scholar 

  35. S. Ramesh, T. F. Yuen and C. J. Shen, Spectrochim. Acta A 69, 670 (2008).

    Article  ADS  Google Scholar 

  36. M. Ram and S. Chakrabarti, J. Alloy Compd. 462, 214 (2008).

    Article  Google Scholar 

  37. S. Saha and T. P. Sinha, J. Appl. Phys. 99, 014109 (2006).

    Article  ADS  Google Scholar 

  38. K. P. Padmasree, D. K. Kanchan and A. R. Kulkarni, Solid State Ionics 177, 475 (2006).

    Article  Google Scholar 

  39. D. K. Pradhan, R. N. P. Choudhary and B. K. Samantaray, Mater. Chem. Phys. 115, 557 (2009).

    Article  Google Scholar 

  40. M. Hema, S. Selvasekerapandian, A. Sakunthala, D. Arunkumar and H. Nithya, Physica B 403, 2740 (2008).

    Article  ADS  Google Scholar 

  41. T. Winie and A. K. Arof, Ionics 12, 149 (2006).

    Article  Google Scholar 

  42. D. K. Pradhan, R. N. P. Choudhary and B. K. Samantaray, Int. J. Electrochem. Sci. 3, 597 (2008).

    Google Scholar 

  43. M. H. Buraidah and A. K. Arof, J. Non-cryst Solids 357, 3261 (2011).

    Article  ADS  Google Scholar 

  44. A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics, London, 1983).

    Google Scholar 

  45. B. A. Shujahadeen, Ph.D. dissertation, University of Malaya, Malaysia (2012).

    Google Scholar 

  46. D. K. Pradhan, R. N. P. Choudhary and B. K. Samantaray, Express Polym. Lett. 2, 630 (2008).

    Article  Google Scholar 

  47. M. H. Buraidah, L. P. Teo, S. R. Majid and A. K. Arof, Physica B 404, 1373 (2009).

    Article  ADS  Google Scholar 

  48. R. Murugaraj, G. Govindaraj and D. George, Mater. Lett. 57, 1656 (2003).

    Article  Google Scholar 

  49. J. Lago, P. D. Battle, M. J. Rosseinsky, A. I. Coldea and J. Singleton, J. Phys. — Condens. Mater. 15, 6817 (2003).

    Article  ADS  Google Scholar 

  50. P. G. Le Comber and J. Mort, in Proceedings of the thirteenth session of the Scottish Universities Summer School in Physics, Aberdeen, Scotland, July 31–August 18, 1972 (No. CONF-720736-) (Academic Press, Inc., New York, 1973).

    Google Scholar 

  51. Sanjeev Gautam, Ph.D. dissertation, Panjab University, (Chandigarh, India, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. N. Isa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsudin, A.S., Isa, M.I.N. Study of the ionic conduction mechanism based on carboxymethyl cellulose biopolymer electrolytes. Journal of the Korean Physical Society 65, 1441–1447 (2014). https://doi.org/10.3938/jkps.65.1441

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.1441

Keywords

Navigation