Skip to main content
Log in

Stability improvement of a wavefront correction system for robust image acquisition

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Stabilization techniques for a wavefront correction system using a Shack-Hartmann wavefront sensor and a membrane deformable mirror (DM) for robust image acquisition were investigated in this research. Though stability of a closed-loop wavefront correction system is essential in practical fields, stability is decreased when the system spends voltage resources to correct non-meaningful residual distortions. In this research, adaptive limit control techniques were devised to ensure the long-term stability of a wavefront correction system. An adaptive deformation technique for the outer non-active actuators of a membrane deformable mirror was adopted to improve the correction efficiency of the wavefront correction system. The experimental results corrected for wavefront distortions by using a configured wavefront correction system were described in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. R. K. Tyson, Principles of Adaptive Optics (Academic Press, San Diego, 1991).

    Google Scholar 

  2. R. K. Tyson, Adaptive Optics Engineering Handbook (Marcel Dekker, New York, 2000).

    Google Scholar 

  3. M. E. Furber, Optimal Design of Wavefront Sensors for Adaptive Optical Systems, Ph.D dissertation, University of Connecticut (1995).

    Google Scholar 

  4. C. Max, Introduction to adaptive optics and its history (American Astronomical Society 197th Meeting, Santa Cruz, 2011).

    Google Scholar 

  5. A. Lopez-Miguel, M. J. Maldonado, A. Belzunce, J. Barrio-Barrio, M. B. Coco-martin and J. C. Nieto, Am. J. Ophthalmology. 154, 799 (2012).

    Article  Google Scholar 

  6. T. A. Planchon, J. P. Rousseau, F. Burgy, G. Gheriaux and J. P. Chambaret, Optics Comm. 252, 222 (2005).

    Article  ADS  Google Scholar 

  7. J. W. Cha, J. Ballesta and P. T. C. So, J. Biomed. Opt. 15, 046022–10 (2010).

    Article  ADS  Google Scholar 

  8. Z. Wang, Z. Jin, J. Zheng, P. Wang and Wei. Z, Zhang. J,Science in China Ser. G. Phys. 48, 122 (2005).

    Article  ADS  Google Scholar 

  9. S. Esposito et al., SPIE. 8149, 814902–10 (2011).

    Article  Google Scholar 

  10. O. Azucena, J. Crest, S. Kotadia, W. Sulivan, X. Tao, M. Reinig, D. Gavel, S. Olivier and J. Kubby, Optics Letters. 36, 825 (2011).

    Article  ADS  Google Scholar 

  11. J. P. Zou and B. Wattellier, Topics in Adaptive Optics, edited by Robert K. Tyson (Croatia, Rijeka, 2012), Chap. 5, p. 95.

  12. [12] David Merino, Adaptive Optics for Optical Coherence Tomography, Ph. D dissertation (National University of Ireland, 2006).

    Google Scholar 

  13. W. Zou and S. A. Burn, Opt. Express. 17, 20167 (2009).

    Article  ADS  Google Scholar 

  14. Y. Li, Imaging the Foveal Cone Mosaic with a MEMS-based Adaptive Optics Scanning Laser Ophthalmoscope, Ph. D dissertation (Univ. of California, 2010).

    Google Scholar 

  15. E. Fedrigo, R. Muradore, and D. Zilio, Control Engineering Practice. 17, 122 (2009).

    Article  Google Scholar 

  16. H. Song, R. Fraanje, G. Schitter, G. Vdovin and M. Verhaegen, European J. Control. 3, 290 (2011).

    Article  MathSciNet  Google Scholar 

  17. A. Dubra, Optics Express. 15, 2762 (2007).

    Article  ADS  Google Scholar 

  18. J. Wenhan, Adaptive optics correction in real-time for dynamic wavefront errors (Institute of Optics and Electronics, Academia Sinica, chengdu, 1986).

    Google Scholar 

  19. A. Facomprez, E. Beaurepaire and D. Debarre, Optics Express. 20, 2598 (2012).

    Article  ADS  Google Scholar 

  20. J. J. Kim, D. C. Burtz and B. N. Agrawal, Acta Astronautica. 68, 141 (2011).

    Article  ADS  Google Scholar 

  21. K. Bush, A. Marrs and M. Schoen, SPIE. 5894, 124 (2005).

    ADS  Google Scholar 

  22. M. A. Vorontsov, T. G. Bifano, J. A. Hammer, M. Cohen and G. Cauwenberghs, Applied Optics. 40, 4243 (2001).

    Article  ADS  Google Scholar 

  23. B. P.Wallace, Design, Implementation, and Testing of an Adaptive Optics Test-Bench, Master dissertation (University of Victoria, 1999).

    Google Scholar 

  24. Q. P. Fernando, Reconstruction and Control Laws for Multi-conjugate Adaptive Optics in Astronomy, Ph. D dissertation (Imperial College London, 2007).

    Google Scholar 

  25. E. Sidick, S. A. Basinger and D. C. Redding, SPIE 7015, 70154p–1 (2008).

    Article  ADS  Google Scholar 

  26. K. L. Baker, E. A. Stappaerts, D. C. Homoelle, M. A. Henesian, E. S. Vliss, C. W. Siders and C. P. J. Barty, SPIE Photonics West MOEMS-MEMS, San Jose, CA, USA, LLNL-PROC-410561, (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Kyu Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SK., Baik, SH., Park, NG. et al. Stability improvement of a wavefront correction system for robust image acquisition. Journal of the Korean Physical Society 65, 117–124 (2014). https://doi.org/10.3938/jkps.65.117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.117

Keywords

Navigation